
International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 5, March 2013

Available Online at: www.ijcam.com

Secured Program Evaluation System

(SPES)

Harshal Chepey
1
, Rohit Deodhar

2
, Sachin Kolhe

3
, Shailesh Patil

4
,

Mamta Bhamare

5

Pune, India

1
harshalchepey@gmail.com

2
r.deo91@gmail.com

3
sachukolhe@gmail.com

4
92patilshailesh@gmail.com

5
mamta.bhamare@mitpune.edu.in

Abstract—This paper focuses on a system which evaluates the

untrusted third party source code submitted online by user

ensuring security of server. The need for this kind of system

arises because of some flaws in the existing systems (e.g.

Reliscore.com). In the existing system there is no provision of

reporting output/error back to the user and hence we aim at

extending the functionality of reporting the output back to the

user. SPES accepts program code written by the user/client and

executes program in a controlled environment. We are going to

use ‘Virtualization’ approach, creating virtual machine and

virtual box for securing the server. If the program code is

malicious, then it is flagged as malicious and error message is

sent to user. If any of the source code contains any malicious

code then it can only alter with the settings of the virtual

machine and hence our server will remain secure in a way. A

malicious code can be code that demands for huge amount of

memory, accesses/deletes/modifies system files, try to connect to

internet. Such kind of codes is not allowed to execute on system.

Keywords—Virtualization, SPES, hypervisor, Virtual Machine

Monitor, Mount Point, Checkpoint

I. INTRODUCTION

Internet has evolved into more interactive, vivid,

productive, and has a potential to influence our lives

tremendously. Many software development tools are available

online, which can be used in various stages in software

development. One of them is compiler, which allows users to

compile and run programs written in different languages

online. The advantage of using online compilers[1] is that

users need not have compilers installed on their computers].

But if program containing some malicious code gets executed

on server, then it could harm server. Hackers can use

malicious programs to attack server by running them on

server. Attacks include denial of service (DOS), backdoors,

root kits, stealing of important information. Hence it is

necessary to execute programs on server in a controlled

manner such that programs have restricted privileges. Our

system executes programs in a controlled and monitored

environment. Program codes submitted by users are compiled

and executed on our server in a virtual machine. Virtual

machines are isolated from their environment, so that if a

program is malicious, its effect is seen only on the virtual

machine that executes it. Thereby protecting server from

attacks.

II. PROPOSED SOLUTIONS

1) FIREWALL

A firewall can either be software-based or hardware-based

and is used to help keep a network secure. Its primary

objective is to control the incoming and outgoing network

traffic by analysing the data packets and determining whether

it should be allowed through or not, based on a predetermined

rule-set. A network's firewall builds a bridge between an

internal network that is assumed to be secure and trusted, and

another network, usually an external (inter)network, such as

the Internet, that is not assumed to be secure and trusted.

Many personal computer operating systems include software-

based firewalls to protect against threats from the public

Internet. Many routers that pass data between networks

contain firewall components and, conversely, many firewalls

can perform basic routing functions. There are generations of

firewall such as packet filters, stateful filter, and application

layer firewall.

Application firewalls function by determining whether a

process should accept any given connection. Application

firewalls accomplish their function by hooking into socket

calls to filter the connections between the application layer

and the lower layers of the OSI model. Also, application

firewalls further filter connections by examining the process

ID of data packets against a rule-set for the local process

involved in the data transmission. The extent of the filtering

mailto:harshalchepey@gmail.com
mailto:r.deo91@gmail.com
mailto:sachukolhe@gmail.com
mailto:92patilshailesh@gmail.com
mailto:mamta.bhamare@mitpune.edu.in
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Router_(computing)

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 5, March 2013

Available Online at: www.ijcam.com

that occurs is defined by the provided rule-set. Given the

variety of software that exists, application firewalls only have

more complex rule-sets for the standard services, such as

sharing services. These per process rule-sets have limited

efficacy in filtering every possible association that may occur

with other processes. . Because of these limitations,

application firewalls are beginning to be supplanted by a new

generation of application firewalls that rely on mandatory

access control (MAC), also referred to as sandboxing, to

protect vulnerable services. Firewall was considered one of

the proposed solutions to implement SPES, but, due to some

disadvantages of firewall it is discarded. Disadvantages of

firewall are that they cannot handle e-mail viruses and

phishing scams and also they cost much more than other

options. Also, firewall has single point of failure in the

system.

2) SANDBOX

A sandbox is a testing environment that isolates untested

code changes and outright experimentation from the

production environment or repository, in the context of

software development. Sandboxing protects "live" servers and

their data, vetted source code distributions from changes that

could be damaging regardless of the intent of the author of

those changes to system or which could simply be difficult to

revert.

In computer security, a sandbox is a security mechanism

for safely running programs. It is often used to execute

untested code, or programs from unverified third-parties,

suppliers and untrusted users. The sandbox typically provides

a tightly-controlled set of resources for guest programs to run

in, such as scratch space on disk and memory. Network

access, the ability to inspect the host system or read from

input devices is usually disallowed or heavily restricted. In

this sense, sandboxes are a specific example of virtualization.

For SPES, we need sandbox software which can handle the

testing of untrusted third party source code efficiently.

Unfortunately, some recent malwares have anti analysis

mechanisms for examining the environment in which they are

being executed [3]. Therefore, such malwares cannot be

efficiently analyzed in isolated sandboxes and virtualized

environments because they are capable of detecting analyzing

environments. Also, sandbox softwares are not freely

available and also they were not compatible to our system,

hence we ruled it out.

3) CHROOT

Systems exposed to the internet are heavily challenged to

keep the bad guys out, and keeping up with the latest security

patches is not always easy. So, the wise admin will attempt to

institute systemic steps to limit the damage should, and one

excellent method is the use of a chroot() jail. The chroot

system call changes the root directory of the current and all

child processes to the given path, and this is nearly always

some restricted subdirectory below the real root of the file

system. This new path is seen entirely as "/" by the process,

and we refer to this restricted environment as the "jail". The

chroot system call is found in all versions of UNIX that we

know of, and it serves to create a temporary root directory for

a running process, and it's a way of taking a limited hierarchy

of a file system (say, /chroot/named) and making this the top

of the directory tree as seen by the application.

A chroot is basically a special directory on your computer

which prevents applications, if run from inside that directory,

from accessing files outside the directory. In many ways, a

chroot is like installing another operating system inside your

existing operating system. In other words, chroot temporarily

changes the root directory (which is normally /) to the chroot

directory (for example, /var/chroot). As the root directory is

the top of the file system hierarchy, applications are unable to

access directories higher up than the root directory, and so are

isolated from the rest of the system. This prevents applications

inside the chroot from interfering with files elsewhere on your

computer. For SPES system, chroot was quite a good solution

due to advantages such as it is an open source and hence

freely available and was able to fulfil almost everything what

our system was expected to do. But, there are some serious

disadvantages of chroot that we came to know when we went

into the details of chroot. And, one of the disadvantages of

chroot is that it is susceptible to “jail break” and through that,

any user can access parent directory or any other partition.

Due to this, it was potential to compromise the system. Hence,

chroot was also discarded.

4) VIRTUALIZATION

A virtualized infrastructure can benefit companies and

organizations of all sizes. Virtualization greatly simplifies a

physical IT infrastructure to provide greater centralized

management over your technology assets and better flexibility

over the allocation of your computing resources. This enables

your business to focus resources when and where they're

needed most, without the limitations imposed by the

traditional "one computer per box" model.

What does it all mean? In the computing realm, the term

virtualization refers to presenting a single physical resource as

many individual logical resources (such as platform

virtualization), as well as making many physical resources

appear to function as a singular logical unit (such as resource

virtualization). A virtualized environment may include servers

and storage units, network connectivity and appliances,

virtualization software, management software, and user

applications.

Basically, a virtual server, or VM, is an instance of some

operating system platform running on any given configuration

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Reversion_%28software_development%29

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 5, March 2013

Available Online at: www.ijcam.com

of server hardware, centrally managed by a virtual machine

manager, or hypervisor, and consolidated management tools.

Note: The software providing the virtualization is called the

VMM (virtual machine monitor)[2] or hypervisor. A

hypervisor can run on bare hardware (native VM) or on top of

an operating system (hosted VM).

A single instance may operate in isolation or share

resources with several other instances of the same (or

separate) server platforms.

In computing, a hypervisor or virtual machine manager

(VMM) is a piece of computer software, firmware or

hardware that creates and runs virtual machines.

A computer on which a hypervisor is running one or more

virtual machines is a host machine. Each of those virtual

machines is called a guest machine. The hypervisor presents

to the guest operating systems a virtual operating platform and

manages the execution of the guest operating systems.

Multiple instances of a variety of operating systems may share

the virtualized hardware resources.

III. PROBLEM DESCRIPTION

Secure Program Evaluation system (SPES) is an application

running on remote server. SPES accepts program code written

by the user/client. SPES executes program in a controlled

environment and returns the output of program to the user. If

the program code is malicious, then it is flagged as malicious

and error message is sent to user. Every time client submits a

malicious program code, an entry is made by the system in its

internal database.

A malicious code can be code that demands for huge amount

of memory, accesses/deletes/modifies system files, try to

connect to internet. Such kinds of codes are not allowed to

execute on system. The system is expected to have a Web user

interface for users to submit programs.

Fig 1. High Level Design

IV. CONTRIBUTION

 This thesis contributes with implementing SPES,

incorporating evaluating the source code with automated

system for number of users to increase efficiency, time

reduction and accuracy. It addresses the problems stated in

previous section, i.e. to evaluate the code submitted by user in

a controlled manner and by testing with sample set of

programs which consists of simple code or potentially

malicious code.

 In order to reach its goal and gain acceptance, SPES has

to prove that it can be worked in controlled manner and for

different languages without breaking. The evaluation

efficiency improvement must come without extensive

overhead on the development time and budget. It is also vital

that other aspects of SPES stay unaffected, such as scalability,

maintainability, compatibility etc.

Another important goal of this work is to serve as a guide

for implementing accessibility using SPES so that we can

promote implementation by communities of developers

working on similar frameworks, thus making users

independent of the need of compiler on their own system.

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 5, March 2013

Available Online at: www.ijcam.com

Fig. 2. Working of System

V. CONCLUSION

This paper proposed a new developed secure server

system which will enable the evaluation of an untrusted

third party program source code submitted online by user

and provide the output or error information about program

back to the user without any harm to the system or server

by either crashing of server or data loss or data corruption.

 ACKNOWLEDGEMENT

We are thankful to our college professors, family and

friends for supporting and guiding us for the successful

completion of this paper.

REFERENCES

[1] Aamir Nizam Ansari, Siddharth Patil, Arundhati

Navada, Aditya Peshave, Venkatesh Borole “Online

C/C++ compiler using cloud computing”- 978-1-61284-

774-0 ,2011.

[2] Paul A. Karger IBM Corporation, Thomas J. Watson

Research Center, “Is Your Virtual Machine Monitor

Secure? “,978-0-7695-3363-6/08 2008 IEEE.

[3] Shinsuke Miwa, Oshiyuki Miyachi, Masashi Eto,

Masashi Yoshizymi, Yoichi shinoda “Design and

implementation of an isolated sandbox with mimetic

intenet used to analyze malwares” USENIX Association

Berkeley,2007

