

International Journal of Computer Architecture and Mobility (ISSN 2319-9229)

Volume 7 -Issue 9, September 2019

Available Online at: www.ijcam.com

Predictive Distributed Rendering for Three Dimensional Games
Bhanu Dutta Parashar

Shri Vaishnav Institute of Information Technology,

Shri Vaishnav Vidyapeeth Vishwavidyalaya ,Indore

Abstract

Rendering three Dimensional Games is a very

computational intensive task, and with the rise in

complexity of meshes and trend of photorealism

in games requires a very powerful Graphics

Processing Unit along with a Multicore CPU, I

hereby propose a proof of work document to

validate an approach to utilize processing power

of different computers connected via a network

to be utilized to render these graphics for a

single node, allowing usage of idle CPU cycles

of computers available over a LAN or over the

Internet. This process predicts the upcoming

frames and renders them on different computers

and then send the rendered frames to the

computer needing them, this will work in a

distributed environment similar to Torrent, and a

caching mechanism can ensure to minimise the

delay even in case of incorrect predictions. A

mathematical approach is taken as a proof with

some assumptions as per needed to prove the

practical viability of this approach along with

calculating the minimum and the recommended

conditions which allows to render at a constant

rate.

1. Introduction

Rendering is a task which require massive

parallel computational power, this is nowadays

achieved by special dedicated circuit called GPU

, i.e. Graphics Processing Unit which is a setup

of large number of parallel ALU cores, along

with a dedicated memory, while the individual

cores are pretty weak in terms of processing

speed when compared to a CPU core, GPUs

operate at comparatively higher clock speeds

and the number of cores is significantly higher

than that of CPUs. This allows GPU to quickly

perform large number of operations in parallel.

Rendering include tasks calculating vertex

coordinates, fragment and color data along etc.

These tasks are independent for each part of

frame and pixel and can be processed

individually in parallel.

GPUs use this powerful parallel processing

capability along with the usage of pipelining to

heavily powerup the process of rendering, the

GPU rendering pipeline is shown in figure 1.

“A computer graphics pipeline, rendering

pipeline or simply graphics pipeline, is a

conceptual model that describes what steps a

graphics system needs to perform to render a 3D

scene to a 2D screen.”
[1]

Figure 1: Graphics Pipeline

 [2]

But GPUs have drawbacks in economical and

physical aspects , GPUs are costly for the

average user and generate a lot of heat and draw

a lot of power, hence it‟s not usually viable for

common users to have powerful GPUs in their

computers , but this constraint restrains them to

run high end games over weak computers, so an

approach that allows to run such games in a

sandboxed environment while rendering over a

network is a highly plausible solution.

But processing over networks has 2

drawbacks
[3]

:

International Journal of Computer Architecture and Mobility (ISSN 2319-9229)

Volume 7 -Issue 9, September 2019

Available Online at: www.ijcam.com

1. The speed of transfer of frames over

network is comparatively slow for real

time rendering.

2. The knowledge of which frame to render

is known just before it is needed.

Due to these drawbacks if the frames are tried to

be rendered as and when they are needed over

the network, they won‟t be available on time to

the needed computer giving rise to huge lag and

a drop in frames per second count.

For this purpose, it is needed that we priorly get

a set of frames which are most probable to be

needed to be displayed, so as to display them as

and when needed.

To get this prior knowledge, it is needed to

predict which frame(s) is/are to be rendered, and

then render them over different computers. To

do so a prediction system is needed.

To select the frame out of the set of frames, it is

also required to maintain a mapping of game

parameters, user control parameters and frames.

2. Basic Architecture

In simple terms the basic architectures involves

predicting the users next actions based on his/her

previous history of actions and behavior , and

use this to predict what game control action, is

the user going to take next with highest

probability.

Then calculate the next game state according to

these user parameters, and using this

information, render the next frame prior to its

actual need.

This process can be run in probability gradient

over user control parameters, i.e. take discrete

changes from the highest probability user

parameters to it‟s opposite parameters according

to the set of user parameters and with each larger

distance to the original user parameter, render

the frames at different machine(s) with

increasing routing distance between the main

node and rendering nodes.

The rendering pipeline principle can still be

applied over a set of machines divided equally

among all.

Each frame might take time to render but since

they are rendered prior to use, these frames can

be sent and stacked in cache. Since Future

frames are predicted, this can be done in a loop

of continuously upgrading calculated game and

predicted user control parameters, but each time

an iteration is made exponential number of

frames are needed to be rendered, hence a

dynamic threshold based on number of nodes

and network capacity is to be placed to limit the

number of frames rendered.

i. Game Parameter Translator: Game

parameters are defined as “set of properties that

define a given state of game”, these parameters

include game dependent data such as - “player

location”, “player level”, “enemy location” etc.

The number of such parameters and their

domains vary too much hence a module that

normalizes and provides dimension reduction

functionality over this, and converting it into a

format that can be used for training a neural

network.

ii. Control to Game Parameter Function:

The approach need to implemented as a

framework, just like how games need to be

recompiled with different configuration for

different platforms, in the same way, a Control

International Journal of Computer Architecture and Mobility (ISSN 2319-9229)

Volume 7 -Issue 9, September 2019

Available Online at: www.ijcam.com

to Game Parameter function is intended to be

designed as part of game development which

will mathematically simulate the game and map

user controls to next frame game parameters.

iii. Cache Map: Each frame when rendered on

some other system is sent to the main system,

the cache is saved in a table for

each frame number of the game, and each table

contains a list of frames one out of which is the

next probable frame.

iv. RNN based Prediction System: For

predicting the next frame of the game, an RNN

is used which is trained on previous game

history and by developers and then further

tweaked by user‟s personal play history.

This prediction system then generates the next

user control parameters and these parameters are

then used to calculate game parameters and this

goes on in iterations of

RNN.

 3. Proof Of Work

For a frame „k‟:

Let the set of Game Parameters be „G
k
‟.

Let the set of User Controls be „U
k
‟.

The Control to Game function „f‟ is defined as:

f(G
k
,U

k
) = G

k+1
 -eq(1)

And Control Function „g‟ is defined as:

U
k
 = g(G

k
) ; if k=0

U
k
 = g(G

k
,U

k-1
) ; if k>0 -eq(2)

Let for a RNN based prediction system „P‟, the

number of RNN states be „n‟.

Let time required to calculate prediction be „Tl‟.

Also the number of nodes need to be the same as

the number of RNN States, i.e „n‟.

Let the predicted User Controls by RNN be

„Up
k
‟ .

So let probability of correctly predicting User

Control be „p‟.

i.e. P(Up
k
= U

k
) = p -eq(3)

Also Let,

Tf = Frame Transfer Time over network

Tr= Frame Render Time

Tt = Parameters Transfer Time

Let Td = Tf + Tr + Tt + Tl

So now we need to find out the relationship

between the number of nodes ,the probability of

correctly predicting a frame and time delays to

find out the practicality of the approach.

Initialization:

1. Render G
0
.

2. Give Input G
0
to RNN.

3. Get U
0
.

4. Calculate G
1

Now after this for further processing the

calculations can be made as 2 cases.

1. Case 1:p = 1, i.e 100% accurate

RNN.(Ideal Case).

In this case each time the rendered frame can be

fetched from the cache on top of it.

So the frames rendered per second are:

International Journal of Computer Architecture and Mobility (ISSN 2319-9229)

Volume 7 -Issue 9, September 2019

Available Online at: www.ijcam.com

F = n/(Td) fps -eq(4)

2. Case 2: Otherwise, i.e. practical case.

Let each time cache fails there is a penalty of

„Tp‟.

Probability of Cache fail be „q‟

q = (1-p). -eq(5)

Now since each time cache fails , time required

to fetch frame increases exponentially.

i.e. Tp ∝ 2
n
. -eq(6)

So,

Tp = k*2
n
 -eq(7)

Let „m‟ be the average number of directly

connected nodes to each node.

So Time delay due to cache miss is:

= (k*2
n/m

)*q. -eq(8)

So Frames rendered per second are:

F = n/(T + (k*2
n/m

)*q)

= n/(T + (k*2
n/m

)*(1-p)) -eq(9)

So the equation 8 defines a relation between

number of nodes and probability of predicting

correct output for a given Time delay and other

constant parameters, for maximizing the frames

per second.

So if we take a constant value for „p‟ , we can

plot a graph for number of nodes vs frames per

second.

So Taking the following assumptions for the

sake of plotting the graph and understanding the

nature of plot.

Let

p = 0.6
[4]

K = 1

T = 0.5s

m = 50

The plotted graph in figure 3.

It shows the nature of graph as that while

initially frames per second increases with

number of nodes but there comes a saturation

after a point because the number of directly

connected nodes is fixed.

Figure 3: Number of nodes vs Frames per second plot

4. Conclusion

So it can be concluded that it is actually practical

to implement a “Predictive Distributed

Rendering for Three Dimensional Games” , but

there is a need to have a large number of directly

connected nodes.

Hence in a LAN network with mesh topology,

very high frames per second can be achieved

very easily. As the figure 3 suggests, with

average configurations frames per second of

around 40 and above is achievable, and with

optical fibres and recent advancements this can

be further increased.

The Best configuration is to have

m = n/2

i.e. half nodes should be directly connected.

Hence a constant trade off between number of

International Journal of Computer Architecture and Mobility (ISSN 2319-9229)

Volume 7 -Issue 9, September 2019

Available Online at: www.ijcam.com

nodes and number of directly connected nodes is

to be maintained to generate best results.

Also it is concluded that due to caching effects

of network speed over rendering speed can be

minimized.

5. References

[1]https://en.wikipedia.org/wiki/Graphics_pipeline.

[2]GRAMPS: A Programming Model for Graphics

Pipelines JEREMY SUGERMAN and KAYVON

FATAHALIAN and SOLOMON BOULOS.

[3] Distributed Parallel Computing in Networks of

Workstations — A Survey Study.

[4]Predicting Player Moves in an Educational Game:

A Hybrid Approach.

