
International Journal of Computer Architecture and Mobility

(ISSN 2319-9229) Volume 4-Issue 3, March 2016

Available Online at: www.ijcam.com

 Introduction To MapRedcuce
Mr. Shubham Sharma

Shubhamsharma1318@gmail.com

Abstract - Map Reduce is a programming model for data-

parallel programs originally intended for data centers. Map

Re-duce simplifies parallel programming, hiding

synchronization and task management. Big Data has come

up with aureate haste and a clef enabler for the social

business, Big Data gifts an opportunity to create

extraordinary business advantage and better service

delivery. Big Data is bringing a positive change in the

decision making process of various business organizations.

With the several offerings Big Data has come up with several

issues and challenges which are related to the Big Data

Management, Big Data processing and Big Data analysis.

Big Data is having challenges related to volume, velocity and

variety. Big Data has 3Vs Volume means large amount of

data, Velocity means data arrives at high speed, Variety

means data comes from heterogeneous resources. In Big

Data definition, Big means a dataset which makes data

concept to grow so much that it becomes difficult to manage

it by using existing data management concepts and tools.

Map Reduce is playing a very significant role in processing

of Big Data. This paper includes a brief about Big Data, Map

Reduce and its related issues, emphasizes on role of Map

Reduce in Big Data processing. Map Reduce is elastic

scalable, efficient and fault tolerant for analyzing a large set

of data, highlights the features of Map Reduce in

comparison of other design model which makes it popular

tool for processing large scale data. Analysis of performance

factors of Map Reduce shows that elimination of their

inverse effect by optimization improves the performance of

Map Reduce.

Keywords— Big Data , Map Reduce , Parallel programming

,Velocity,fault tolerant.

 I. INTRODUCTION

 Mapreduce is a processing technique and a program
model for distributed computing based on java. The
mapreduce algorithm contains two important tasks,
namely map and reduce. Map takes a set of data and
converts it into another set of data, where individual
elements are broken down into tuples (key/value pairs).
Secondly, reduce task, which takes the output from a map
as an input and combines those data tuples into a smaller
set of tuples. As the sequence of the name mapreduce
implies, the reduce task is always performed after the map
job.The major advantage of mapreduce is that it is easy to
scale data processing over multiple computing nodes.

Under the mapreduce model, the data processing
primitives are called mappers and reducers. Decomposing
a data processing application into mappers and reducers is
sometimes nontrivial. But, once we write an application in
the mapreduce form, scaling the application to run over
hundreds, thousands, or even tens of thousands of
machines in a cluster is merely a configuration change.
This simple scalability is what has attracted many
programmers to use the mapreduce model.

2. ANALYSIS OF BIG DATA AND ROLE OF MAP
REDUCE

In this part we will analysis the basics of big data and
mapreduce

2.1 Big Data:
 Big data usually includes data sets with sizes beyond the

ability of commonly used software tools to capture,

curate, manage, and process data within a tolerable

elapsed time. Big data "size" is a constantly moving

target, as of 2012 ranging from a few dozen terabytes to

many petabytes of data. Big data requires a set of

techniques and technologies with new forms of

integration to reveal insights from datasets that are

diverse, complex, and of a massive scale. Big data is a

buzzword, or catch-phrase, meaning a massive volume of

both structured and unstructured data that is so large it is

difficult to process using traditional database and software

techniques. In most enterprise scenarios the volume of

data is too big or it moves too fast or it exceeds current

processing capacity.

2.1.1. History:-
 The story of how data became big starts many years

before the current buzz around big data. Already seventy

years ago we encounter the first attempts to quantify the

growth rate in the volume of data or what has popularly

been known as the “information explosion” (a term first

used in 1941, according to the Oxford English

Dictionary). The following are the major milestones in

the history of sizing data volumes plus other “firsts” in the

evolution of the idea of “big data” and observations

pertaining to data or information explosion.

2.1.2 Basic Model of big data:-

 Big data can be described by the following

International Journal of Computer Architecture and Mobility

(ISSN 2319-9229) Volume 4-Issue 3, March 2016

Available Online at: www.ijcam.com

characteristics:

 Volume:-The quantity of generated and stored data. The

size of the data determines the value and potential insight-

and whether it can actually be considered big data or not.

Variety:-The type and nature of the data. This helps

people who analyze it to effectively use the resulting

insight.

Velocity:-In this context, the speed at which the data is

generated and processed to meet the demands and

challenges that lie in the path of growth and development.

Variability:-Inconsistency of the data set can hamper

processes to handle and manage it.

Veracity:-The quality of captured data can vary greatly,

affecting accurate analysis.

2.1.2 Basic Model of Map Reduce:-

 MapReduce is a programming model and software

framework first developed by Google (Google’s

MapReduce paper submitted in 2004).It is organized as a

“map” function which transform a piece of data into some

number of key/value pairs. Each of these elements will

then be sorted by their key and reach to the same node,

where a “reduce”

function is use to merge the values (of the same key) into

a single result.

2.1.3. Basic Model of HDFC:-

The Hadoop Distributed File System (HDFS) is a

distributed file system designed to run on commodity

hardware. It has many similarities with existing

distributed file systems. However, the differences from

other distributed file systems are significant. HDFS is

highly fault-tolerant and is designed to be deployed on

low-cost hardware. HDFS provides high throughput

access to application data and is suitable for applications

that have large data sets. HDFS relaxes a few POSIX

requirements to enable streaming access to file system

data.

 3. PROGRAMMING MODEL

 The computation takes a set of input key/value pairs, and

produces a set of output key/value pairs. The user of the

MapReduce library expresses the computation as two

functions: map and reduce.Map, written by the user, takes

an input pair and produces a set of intermediate key/value

pairs. The MapReduce library groups together all

intermediate values associated with the same intermediate

key I and passes them to the reduce function.The reduce

function, also written by the user, accepts an intermediate

key I and a set of values for that key. It merges these

values together to form a possibly smaller set of values.

Typically just zero or one output value is produced per

reduce invocation. The intermediate values are supplied to

the user’s reduce function via an iterator. This allows us

to handle lists of values that are too large to fit in

memory.

3.1 Example

 Consider the problem of counting the number of

occurrences of each word in a large collection of

documents. The user would write code similar to the

following pseudocode.

map(String key, String value):

// key: document name

// value: document contents

or each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

Name

Node
Back Node

Data

node

Data

Node

Data

Node

Data

Node

I

N

P

U

T

D

A

T

A

Map

()

Map

()

Map

()

Reduce()

()

Reduce()

O

U

T

P

U

T

D

A

T

A

International Journal of Computer Architecture and Mobility

(ISSN 2319-9229) Volume 4-Issue 3, March 2016

Available Online at: www.ijcam.com

result += ParseInt(v);

Emit(AsString(result));

The map function emits each word plus an associated

count of occurrences (just 1 in this simple example). The

reduce function sums together all counts emitted for a

particular word.In addition, the user writes code to fill in a

mapreduce specification object with the names of the

input and output files and optional tuning parameters. The

user then invokes the MapReduce function, passing it to

the specification object. The user’s code is linked together

with the MapReduce library (implemented in C++). Our

original MapReduce paper contains the full program text

for this example [8].More than ten thousand distinct

programs have been implemented using MapReduce at

Google, including algorithms for large-scale graph

processing, text processing, data mining, machine

learning, statistical machine translation, and many other

areas. More discussion of specific applications of

MapReduce can be found elsewhere.

3.2 Types

 Even though the previous pseudocode is written in

terms of string inputs and outputs, conceptually the map

and reduce functions supplied by the user have associated

types.

Map (k1,v1) → list(k2,v2)

Reduce (k2,list(v2)) → list(v2)

That is, the input keys and values are drawn from a

different domain than the output keys and values.

Furthermore, the intermediate keys and values are from

the same domain as the output keys and values.

4. IMPLEMENTATION

 Many different implementations of the Map Reduce

interface are possible. The right choice depends on the

environment. For example, one implementation may be

suitable for a small shared-memory machine, another for

a large NUMA multi-processor, and yet another for an

even larger collection of networked machines.

Below is the implementation :

Map(input_record) {

Emit(k1,v1)

Emit(k2,v2)

…

…

}

These Map(input_record) function takes

All of your record as input and then convert

Them into key,value pair.

Reduce(key,values){

Aggregate=initialize()

While(values.has_next){

Aggregate=merge(values.next)

}

Collect(key,aggregate)

}

These reduce function then split the whole part and sort

the records and merge them into a single result.

5. PERFORMANCE

 In this section we measure the performance of

MapReduce on two computations running on a large

cluster of machines. One computation searches through

approximately one terabyte of data looking for a

particular pattern.The other computation sorts

approximately one terabyte of data.These two programs

are representative of a large subset of the real programs

written by users of MapReduce .one class of programs

shuf_es data from one representation to another, and

another class extracts a small amount of interesting data

from a large data set.

ACKNOWLEDGMENT

This research paper is made possible through the help and

support from everyone, including: parentsteachers,family,

friends, and in essence, all sentient beings.Especially,

please allow me to dedicate my acknowledgment of

gratitude toward the following significant advisors and

contributors:

First and foremost, I would like to thank Ms. Shaifali

shrivastava for his most support and encouragement. She

kindly read my paper and offered invaluable detailed

advices on grammar, organization, and the theme of the

paper . She had delivered content for my research paper .

Finally, I sincerely thank to my parents, family, and

friends, who provide the advice and financial support. The

product of this research paper would not be possible

without all of them.

 REFERENCES:

[1]. Hadoop: Open source implementation of MapReduce.

http://lucene. apache.org/hadoop/.

[2].The Phoenix system for MapReduce programming.

http:// csl.stanford. edu/~christos/sw/phoenix/.

[3].BigData: International Journal of Big Data

Intelligence,http://www.inderscience.com/jhome.php?jco

de=ijbdi

[4].MapReduce: Google Research Publication:

http://research.google.com/archive/mapreduce .htm.

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjEstWN7cvLAhVFC44KHdp8BzsQFggqMAE&url=http%3A%2F%2Fresearch.google.com%2Farchive%2Fmapreduce.html&usg=AFQjCNHzS1cTZ8fVZG5zAYEyOEvcEpgkSQ&sig2=mPFBr7Unob0j9mwC55hWzQ
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjEstWN7cvLAhVFC44KHdp8BzsQFggqMAE&url=http%3A%2F%2Fresearch.google.com%2Farchive%2Fmapreduce.html&usg=AFQjCNHzS1cTZ8fVZG5zAYEyOEvcEpgkSQ&sig2=mPFBr7Unob0j9mwC55hWzQ
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjEstWN7cvLAhVFC44KHdp8BzsQFggqMAE&url=http%3A%2F%2Fresearch.google.com%2Farchive%2Fmapreduce.html&usg=AFQjCNHzS1cTZ8fVZG5zAYEyOEvcEpgkSQ&sig2=mPFBr7Unob0j9mwC55hWzQ

	page3
	page7
	page15

