
International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 4,February 2013

 Available Online at:www.ijcam.com

 Implementation of a Real-time Garbage Collector Technique

Sanjay Sahu, Anand Rajavat

Sri Vaishnav Institute of Science and Technology

Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal

er.sanjaysahu@gmail.com

Abstract- ―Garbage collection is a well known

technique to automatically reclaim unused memory areas for

future use.‖ Almost all such methods require large amounts

of additional memory. Conventional garbage collection

techniques are however not suited for use in real-time

systems. There is significant interest in applying real time

garbage collection to system and we implemented one that

is ―Real Time Reference counting Technique‖ that increases

memory efficiency by about 50 % compared to the most

memory efficient previously presented predictable garbage

collector. Our aim is to find a different effective algorithm

for garbage collection technique. This will work as a well

under normal condition as well as real time condition too.

Key words-Garbage Collection, Real-Time, Reference Counting,

Algorithms, Measurement, Java.

Categories and subject Description-Automatic Memory

Management (Garbage Collector) and Special Purpose System

(Real Time System)

I. INTRODUCTION

Currently there is a number of garbage collection

techniques available [1,6].In this thesis presents work in the

area of automatic memory management for real-time

systems. The motivation of the thesis is to be able to

develop real-time systems using modern languages such as

Java. Since these languages commonly use automatic

memory management or garbage collection (GC), which

traditionally has had an unpredictable runtime behavior, we

could either try to eliminate the need for GC using manual

techniques, or we could develop GC techniques for these

systems. Since GC is such a powerful tool to eliminate

memory related programming errors, we decided to develop

techniques to use GC in real-time systems. During this work

three other GC techniques for these systems have been

published. The main advantage of our work compared to the

other three is that memory utilization efficiency increased

by about 50 %. We have also developed an optimization for

incremental garbage collectors and a static garbage collector

that aims to eliminate the need for runtime garbage

collection.

The programmer must write bookkeeping code to keep

track of heap-allocated cells, and free them explicitly when

they are no longer needed. This can make programs

significantly more complex. In languages with garbage

collection, the programmer need not worry about the

accounting of allocated cells; this makes programs simpler

and more clear-cut. To be able to maintain full control of the

runtime behavior of a system, it must be possible to predict

the amount of resources (e.g. CPU time and memory) that is

required for any (virtual) machine level instruction and for

all runtime system work. Note that using such a system does

not prevent writing an unpredictable application. An

example is an application that waits for external events, e.g.

input from a user. First, it is not always possible to know

when the event occurs, and second the data passed with the

event may be unknown. Thus, developer must still follow

rules to handle such cases. Early implementations of new

languages are typically designed to be easy to implement

and prove correct.

To be more specific, garbage collection algorithms may

be designed to interrupt the application for short time

periods in the general case, but it need not be guaranteed

that it will collect all garbage memory before the system

runs out of memory. If the memory runs out, the system can

be stopped to collect the remaining garbage memory. Such

stop may take a second or two, but that does not matter to

these systems. Unfortunately many such techniques are

called real-time garbage collectors.

II. GARBAGE COLLECTION RELATED WORK

Garbage Collection was invented by John McCarthy[1]

around 1959 to solve the problem of manual memory

management in LIST PROCESSING (LISP). Garbage

Collection (GC) is detection and reclaiming of unused or

inaccessible data structure. It is a form of automatic memory

management, which reclaims garbage or memory used by

objects that are no longer in use by application. Java

runtime provides various types of garbage collection in java,

which you can choose based upon your application’s

performance requirement.

Each garbage collector has been implemented to increase

the throughput and reduces the garbage collection pause

time. There are many techniques used for garbage

collection.

mailto:er.sanjaysahu@gmail.com

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 4,February 2013

 Available Online at:www.ijcam.com

2.1 Mark-and-sweep

Mark-and-sweep collectors perform the garbage

collection in two phases.

(1) Marking Phase: - Where all nodes in use are marked.

Mark-and-sweep collectors perform First, live memory is

marked by traversing the object graph starting at the roots.

Next all unmarked memory is reclaimed in the sweep phase.

The algorithm starts by marking the roots. Marking an

object includes finding its children and marking them. By

marking the roots, all reachable objects will be marked. The

sweeping phase traverses the heap and all unmarked objects

found are reclaimed.

It is a common choice to start the garbage collector

from the memory allocation function. In a non-incremental

algorithm the collector is often started when the system runs

out of memory. When using incremental collectors, some

work is commonly performed every time memory is allo-

cated. The amount of work in each increment is often

proportional to the amount of allocated memory.

(2) Sweeping Phase: - All unmarked nodes are returned to

the available Space list. This Second phase is unimportant

when all nodes are of fixed size. Following figure 1 shows a

node structure. When nodes are of variable size, it is

desirable to compact the memory size, so that all free nodes

form a contiguous block of memory (which is known as

Memory Compaction).

2.2 Compacting

Compacting the heap includes moving live regions and

updating pointers to the regions which have been moved. In

this two scans of the entire memory. The objective of the

first scan is to perform the compaction and to build a "break

table" which is used by the second scan to readjust the

references. The break table contains the initial address of

each "hole" - a sequence of unmarked cells and the size of

the hole. The construction of the break table can be made

without additional storage because it can be build up in the

holes. It can be proved that the spaces available in the holes

are sufficient to store the table. However, the table should

be handled dynamically, rolling through the holes already

filled with new data. At the end of the first scan, the live

objects are collected into one end of the memory. The break

table occupies the liberated part of the memory. The table is

then sorted to speed up the pointer readjustment done by the

second scan. It consists of examining each pointer,

consulting the table to compute the new position of the cell

and changing the pointer accordingly. This algorithm is

considerably slow because of the use of the holes and the

binary search for each reference.

2.3 Copying Algorithms

A copying garbage collector uses a heap which is

divided into two or more sub-heaps. This section describes

two sub-heap versions. The two sub-heaps are labeled to-

space and from-space, respectively. All objects are allocated

in to-space where all live memory regions reside. When to-

space is full, a flip is performed. First the labels are

swapped, i.e. to-space becomes from-space and from-space

becomes to-space. Next, the roots are copied from from-

space (previously called to-space) into to-space. When an

object is copied, all children of that object are copied too.

When all live objects have been copied, all pointers have to

be updated to point to the new copies of the objects. Finally

the garbage collector hands over control to the mutator. An

advantage of a copying garbage collector is that when the

objects are copied, they are compacted. Thus, a copying

garbage collector does not suffer from external

fragmentation. Because the memory is compacted and

placed at one end of the heap, allocation of n bytes can be

done by simply sliding a pointer n positions in the free

memory region. An advantage of the technique is that the

running time of the garbage collector is proportional to the

number of live objects. Thus, a large heap size does not

affect the running time of the collector, and the collector can

be run less frequently.

2.4 Reference Counting

Reference counting [3] is a well known Garbage

Collection technique where each object contains a count of

the number of reference to it held by other objects. If an

object's reference count reaches zero, the object has become

inaccessible, and it is put on a list of objects to be destroyed.

In Computer Science, Reference Counting is a technique of

storing the number of references, pointers, or handles to a

resource such as an object or block of memory. It is

typically used as a means of de-allocating objects which no

longer referenced. In this a node is pointed by A & B and a

one more node, hence its reference count is 3(Figure 1).

Fig.1 Reference count

Free List Reference Count

0 0 0 null

3 2

0 1

A

B

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 4,February 2013

 Available Online at:www.ijcam.com

Fig. 2 Classification of garbage collection technique

III. PROBLEMS WITH GARBAGE COLLECTOR

Previous approaches to real time garbage collection

have generally suffered from a variety of problems. In this

section we will describe these problems.

3.1 Recursive freeing

When the last reference to a data structure is deleted, all

objects in that structure are reclaimed. If the data structure is

large, in the worst case all objects on the heap, this behavior

causes long interrupts in the execution of the system. Since

recursive freeing can occur anywhere when reference counts

are decremented, e.g. at assignments, the WCET becomes

very pessimistic. To be able to use reference counting in

hard real-time systems, recursive freeing must be

eliminated.

3.2 External fragmentation

External fragmentation occurs when small regions of

free memory exist between the allocated objects. Even

though there is enough memory to allocate a new object,

there may be no contiguous region that is large enough.

Thus, the allocation fails even if there is memory available.

External fragmentation rarely causes problems, since clever

allocation strategies keep it small. Even if the heap becomes

more fragmented, most systems have enough memory to

continue. But to predict the external fragmentation in

advance is a difficult problem with no known solution. In a

hard real-time system, the worst case memory usage must

be known in advance, thus external fragmentation must be

handled.

3.3 Worst Case of Execution Time

WCET of allocation Allocators usually have a WCET

that is proportional to the heap size or to the logarithm of

the heap size. The average execution time is normally much

shorter due to pools of blocks of common sizes, but the

average execution time is of little use in hard real-time.

Thus, execution time should be improved for the technique

to be competitive.

3.4 Inability to reclaim cyclic garbage

Since the internal references of cyclic data structures

keep all reference counts above zero, the objects that are

part of cycles cannot be reclaimed. Many systems can be

implemented to have no dead cyclic data structures.

However, for the technique to be useful when dead cycles

cannot be avoided, it must be possible to reclaim them.

IV. OVERVIEW OF REAL TIME REFERENCE COUNT

GARBAGE COLLECTOR

In Computer Science, Real-Time system [5] may be

one where its application can be considered to be mission

critical. Now let see the more detailed classification of real-

time systems. There are three types of systems discussed

and are clearly distinguished by their features.

4.1 A soft real-time system

It has specified deadlines, but an occasional slightly

missed deadline does not lead to disaster. However, the

quality of the result is reduced. Or in the other words it will

tolerate such lateness, and may respond with decreased

service quality (e.g., omitting frames while displaying a

video).For e.g. - Multimedia systems, audio and video

decoders, freezer are examples of soft real-time systems.

4.2 A hard real-time system

It has strict deadlines that should be guaranteed to be

met at all times. Even an occasional slightly missed deadline

in a hard real-time system could lead to a disaster. The anti-

lock brakes on a car are a simple example of a real-time

computing system — the real-time constraint in this system

is the short time in which the brakes must be released to

prevent the wheel from locking. Examples of hard real-time

systems are airplane flight controllers and medical

equipment’s.

4.3 Generations

Most straightforward GC will just iterate over every

object in the heap and determine if any other objects

reference it. This gets really slow as the number of objects

in the heap increase. GC's therefore make assumptions

about how your application runs. Most common assumption

is that an object is most likely to die shortly after it was

created: called infant mortality. This assumes that an object

Garbage Collection algorithm

Copying algorithm

Mark

Sweep

Reference Counting

Compact

http://en.wikipedia.org/wiki/Anti-lock_brakes
http://en.wikipedia.org/wiki/Anti-lock_brakes

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 4,February 2013

 Available Online at:www.ijcam.com

that has been around for a while, will likely stay around for

a while. GC organizes objects into generations (young,

tenured, and perm) this is important. Ways to measure GC

Performance

 Throughput- Percentage of time not spent in GC over a

long period of time.

 Pauses - Application becomes unresponsive because of

GC.

 Footprint- Overall memory a process takes to execute.

 Promptness- It is the time between object death, and

time when memory becomes available.

If we were dealing with Real-time system then normal

case of garbage collection described above will not work

properly. So a new Concept of garbage collection is used

that is Reference counting, which differs radically from

other garbage collection techniques. This concept counts the

number of references to every object and recycles the object

if its reference count becomes zero. A reference counting

memory handler is also used which consists of two main

components that is – increment and decrement reference

counters [7]. The decrement operation also handles the de-

allocation when reference counter becomes zero.

4.4 Decreasing Fragmentation

The garbage collection techniques such as the

compacting ones are best in handling the fragmentation

problem. By compacting memory, with each Garbage

Collector cycle, fragmentation is eliminated. When memory

is compacted, objects are moved from one memory region

to another. Some of the garbage collection techniques do not

move all the objects, while the others do.

In many real-time applications, currently static

allocation is used.

4.5 Improving Performance

To allocate memory on the stack the allocation

statement should only be executed a limited number of

times per method activation and the objects should not be

referenced by any method which is an ancestor in the call

graph, i.e. there should not be a path from the referring

method to the method which contains the allocation

statement. Recent studies suggest that as many as 56% of

the allocated objects could be allocated on the stack in some

Java applications.

The study was done using run-time analysis, so our results

may differ. The benefit of stack allocation is that these

objects need no reference count. Using further analysis it is

possible to find local references which only refer to stack-

allocated objects. These references need no special

reference assignment. Thus, those references cause no

overhead at all! Using stack allocation, the reference

assignment routine becomes slightly more complicated.

Instead of checking whether a reference is null or not, it

must be checked whether the reference is to the stack or not.

When stack allocations have been added to the code, a

peephole optimization technique proposed by Barth

removes redundant reference count updates. Barth

enumerates four cases where reference counts can be

canceled.

1. The reference count can be set to one immediately, if an

allocation is followed by an assignment.

2. If an object is allocated and the reference to it is

immediately lost, code can be in lined to free the object.

3. Both the updates can be removed if a reference count is

incremented and immediately decreased.

4. Both updates can be removed if a reference count is

decremented and immediately incremented

According to tests by Barth, after allocations the first

case eliminates almost all increments, while the other three

cases are less common. Further tests have to be conducted to

see whether this technique is worth using.

V. DESIGN OF RTRC GARBAGE COLLECTOR

In this section, the design of a RTRC is presented. This

design does not cover recovering cyclic data structures,

since any of the techniques de-scribed above can be used.

As stated above, many systems can quite easily be designed

not to produce any cyclic garbage, especially hard real-time

systems where the developers must have full control of the

execution of the system.

By using features of java an application is developed

which is based on RC and RTRC technique. Starting with

RC, its working is described by process flow diagram

(Figure 3). The RC of object reference is incremented and

throughput is calculated. On the other hand RC is

decremented and promptness is calculated by using gc()

method.

Next is RTRC (Figure 5), in this method our application

is executed inside the constructor of stuff class. The object

of class stack is also created in run () method. Every stuff

object is pushed inside the stack .When the object in class

stuff is no longer needed, it is popped from stack .Instead of

sending the object for GC it is transferred in a vector also

known as free list.

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 4,February 2013

 Available Online at:www.ijcam.com

Figure 3 Shows process flow diagram of RC technique

Figure 4 Shows process flow diagram of RTRC Technique

Simple reference counts require frequent updates.

Whenever a reference is destroyed or overwritten, the

reference count of the object it references is decremented,

and whenever one is created or copied, the reference count

of the object it references is incremented.

5.1 The allocator of RT-Reference Counting

 Reference new (int size)

Reference ref;

if inBackroundProcess()

deallocate(); // Algorithm 4.3

end // The size is adjusted fit in the free-list or in

the large object region

size = adjust(size);

switch size

case 2: ref = fl2; fl2 = fl2.next; break;

case 4: ref = fl4; fl4 = fl4.next; break;

case 8: ref = fl8; fl8 = fl8.next; break;

...
// Allocate from the large object area

default: ref = allocate(size); break;

end // Call constructor

ref.init();

return ref;

end

5.2 Write-barrier using RT-Reference Counting

release(Reference ref)

ref.refCount = ref.refCount - 1;

if ref.refCount == 0

// The type field refers to type specific data

// The tbfList is the to-be-free list of

// of the type

synchronized ref.type.tbfList

ref.next = ref.type.tbfList;

ref.type.tbfList = ref;

end

end

end

assignReference(Reference lhs, Reference rhs)

if rhs.onHeap()

rhs.refCount = rhs.refCount + 1;

end

if lhs.onHeap()

release(lhs);

end

lhs = rhs;

end

The Application has the following features:-

1. The application output of performance of both the

algorithms is shown by using a simple bar graph

indicating the performance of applications in terms of

overall throughput and promptness.

2. Both the algorithms have been implemented in

multithreaded environment.

It is clearly shows the standard count algorithm

decreases the overall throughput as promptness of

application as it uses the mode of simple reference counting

It is clearly shows the RT algorithm increases the

overall throughput of application as instead of destroying

an object as soon as its reference count becomes zero, it is

Main Class
User2

Create User
Class Object

Create Thread
 Object

Call Run method

Calculate
Throughput

Create Stack Object

Pop Stuff
Object

Create Vector
Object

Calculate
promptness

Create Stuff Class
Object

Run Application Push Stuff
Object

Transfer Object in
Vector

Main Class Standard Count1

Create Standard Count Class Object

Create Thread Object

Create Thread Object

Run Application Call Run Method

Create Standard Count Object

Call Assign () Assign References

Increment References
Count

Calculate Throughput

Decrement Reference Count

Call gc()

Calculate Promptness

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 4,February 2013

 Available Online at:www.ijcam.com

added to a list of unreferenced objects, and periodically (or

as needed) one or more items from this list are destroyed.

Figure 5 Output using RC technique (an application is

running concurrently)

Figure 6 Output Using RTRC technique (an application is

running concurrently)

By following the process flow diagram of RC & RTRC,

an application is developed during implementation which is

based on RC & RTRC technique. For an ideal case

according to meaning of Throughput & Promptness, a

system should be efficient when its throughput is more &

promptness is less .Now proceeding towards the result and

evaluation, which is done by saving the values of

throughput & promptness obtained from application. During

saving the values, application is concurrently running with

other applications at back which provides a real-time effect

and then the real-time values of throughput & promptness

are saved. Hence RTRC is a good technique because

throughput is increased and promptness is decreased, which

is a desired result.

VI. CONCLUSION

In this work it seems that the promptness of the system

is decreased and the throughput is increased when RT

reference counting is used as compared to the standard

reference counting. In this thesis the two garbage collection

techniques are our point of attention, which will help or

gives us a prediction about the behavior of the system when

used.

As already stated that- what garbage collection is,

which a back end work done by operating system. This

garbage collection is very important aspect of memory

management .This garbage collection is carried out when

system is in need of resource that is memory, then operating

system initiates garbage collection work at the back end. In

this report a Marking Technique for garbage collection is

discussed, which seems not suitable to work in a Real Time

Environment. After that a new Reference Counting concept

was introduced which seems good but no promising enough

to work in Real-Time. Real-Time Reference Counting is

seems good for carrying Garbage Collection which should

be more deeply analyzed prior to implementation.

REFERENCES

[1] John McCarthy. Recursive functions of symbolic expressions and their

computations by machine, part I. Communications of the ACM, 3(4):184-

195, April 1960.

 [2] W. Puffitsch and M. Schoeberl. Non-blocking root scanning for real-

time garbage collection. In Proceedings of the 6th International Workshop
on Java Technologies for Real-time and Embedded Systems (JTRES),

pages 68–76, Santa Clara, California, Sept. 2008. ACM Press.

[3] M. Schoeberl and W. Puffitsch. Nonblocking real-time garbage

collection. ACM Trans. Embed. Comput. Syst., 10:6:1–6:28, August 2010.

[4] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek.

Schism: Fragmentation-tolerant real-time garbage collection. In
Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, ACM SIGPLAN Notices, pages

146–159, Toronto, Canada, June 2010. ACM Press.

[5] F. Siebert. Concurrent, parallel, real-time garbage-collection. In J. Vitek

and D. Lea, editors, Proceedings of the Ninth International Symposium on
Memory Management, pages 11–20, Toronto, Canada, June 2010. ACM

Press.

[6] P. R. Wilson: Uniprocessor Garbage Collection Techniques. Proc. of

the 1992 Intl. Workshop On Memory Management. Springer-Verlag

Lecture Notes in Computer Science series.

[7] Deutsch, L.P., and Bobrow, D.G. An Efficient, Incremental, Automatic

Garbage Collector. Commun. ACM 19, 9 (September 1976) 522-526.

