

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

Efficient Grammar Recovery and Refactoring

Through Parsing Technique
 Sachin Singh

1
SRM University singhsachin2407@gmail.com, A. Kulothungan

 2
 SRM University kulosoft@gmail.com

Abstract— Many software development tools that

assist with tasks such as testing and maintenance are specific to

a particular development language. Parser is required to

generate a grammar but a grammar is not always available for

a language.

By the grammar which is recovered, we can generate

test case application. Testing is also performed. The grammars

are engineered from scratch, reverse engineered from the tools

that contain them implicitly, extracted from available sources.

The list of possible artefacts bearing grammar knowledge

includes language processor source code, language

documentation, and codebase. The extraction process often

comprises more than simple mapping activities.

The main characteristic of the approach is that the

grammars are not constructed from scratch but they are rather

recovered by extracting them from language references,

compilers, and other artefacts. We provide a structured process

to recover grammars including the adaptation of raw extracted

grammars and the derivation of parsers. The process is

applicable to possibly all existing languages for which business

critical applications exist.

We implement the refactoring algorithm to remove the

iterations from the grammar. On this iterative grammar we

perform grammar refactoring. By refactoring, the internal

structure of grammar is modified. Therefore, we get an

unambiguous grammar which is more efficient for use. As a

result a recursive grammar is generated. This recursive

grammar can be used effectively for test case generation.

Keywords— Grammar, grammar recovery, grammar refactoring,

parse tree, recursive grammar.

I. INTRODUCTION

A language is formally defined as a countable set of finite

sequences of symbols from a given alphabet. Conversely,

anything that can be expressed or perceived as a set of

symbol sequences can be considered a language.

A language is commonly defined by a grammar. Most of

language processing tools and methodologies rely on the

parsing process, which analyses the source code according to

the rules of the grammar. This places the grammar at the

foundation of almost any language processing infrastructure.

The software which input can be described by a grammar is

called grammar-based software or grammarware.

A grammar does not exist for every language. When a

grammar for a language is not available, acquiring a correct

and complete grammar for that language is the most difficult,

costly, and time-consuming phase of constructing a tool for

use with the language. To address the problem of grammar

acquisition, researchers have directed significant attention to

the problem of grammar recovery, which comprises the

procedures involved in the derivation of a grammar for a

language from the available resources.

Recovering a grammar from only code samples is called

grammar inference. Gold’s theorem states that it is

impossible to infer the grammar of an arbitrary unknown

language from only positive (syntactically correct) code

samples. Recovering a grammar from a language reference

manual necessarily involves much manual effort, and

reference manuals often contain errors. La¨mmel and

Verhoef use a language reference manual (including code

samples from that reference manual) to semi-automatically

recover a grammar.

Sellink and Verhoef automatically recover a grammar from

BNF found in the source code of a compiler. Finally,

recovering a grammar from a hard-coded parser requires

manual inspection of source code. Duffy and Malloy describe

a related, but distinct, approach to recovering a grammar

from a hard-coded parser. They instrument the source code

of a hard-coded parser to generate parse trees; using these

parse trees, they automatically recover a grammar.

A significant issue associated with the recovery of a

grammar from a hard-coded parser is that parser generation

algorithms place restrictions on the form of a grammar.

These restrictions make the grammar difficult to

comprehend, meaning that the grammar might not be useful

in its recovered form. For example, left recursion often is

used to introduce repetition in a grammar. However, a

recursive descent parser cannot recognize a grammar in

which a nonterminal is expressed using left recursion. In

some cases, such a nonterminals can be rewritten with right

recursion; however, in other cases, such a nonterminals

cannot be easily rewritten with right recursion.

We define a recursive grammar as one that contains a

nonterminal expressed using left or right recursion and an

iterative grammar as one that contains a nonterminal

expressed using iteration. If a grammar contains both kinds

of nonterminal, we refer to it as iterative. Unlike a recursive

grammar, an iterative grammar is illegible to the average

software developer further; an iterative grammar is more

verbose than the corresponding recursive grammar. Finally,

multiple implementations of an iterative grammar can result

in distinct versions of the grammar because iteration must be

bounded and the bound is an implementation-defined value.

The grammars are engineered from scratch, reverse

engineered from the tools that contain them implicitly,

extracted from available sources. The list of possible

artefacts bearing grammar knowledge includes language

processor source code, language documentation and

codebase. The extraction process often comprises more than

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

simple mapping activities. In the case of one primary

grammar and a set of secondary grammars derived from it,

the former is usually called a base-line grammar.

The problem with language dialects is that there has been

little research, to date, addressing the problem of reverse

engineering a grammar or language specification for a

language dialect from existing language artefacts. L¨ammel

and Verhoef have developed a technique that uses a

language reference manual and test cases to recover a

grammar for a language or dialect. However, their technique

requires user intervention along most of the stages of

recovery and some of the recovery process is manual.

Bouwers et al. present a methodology for recovering

precedence rules from grammars. However, there is no

existing technique to enable a developer to automatically

reverse engineer a grammar for an existing language or

language dialect.

La¨mmel and Verhoef in [3] describe a sequence of cases

that cover virtually all of the approaches for recovering a

grammar. They refer to the grammar recovery process as

grammar stealing because the language already exists and

the goal of grammar recovery is to leverage existing

language artifacts to “steal” the grammar. The sequence of

cases that they enumerate is distinguished by the language

artefacts that are available for the recovery process. The

first case in the sequence distinguishes those artifacts that

include compiler sources from those that include only a

language reference manual.

Sellink and Verhoef present a completely automated

approach to grammar recovery using the source code of a

compiler. Their approach leverages a parser for which the

grammar is encoded in a dialect of BNF. They translated the

extracted production rules into the modular syntax

definition formalism (SDF) and used the recovered

grammar in the development of a Software Renovation

Factory.

There are several advantages to the approach of Sellink

and Verhoef. First, their approach is applicable when the

language reference manual is unusable. Second, they require

neither code samples nor parse trees in their grammar

recovery. A disadvantage of their approach is that they do

require that the BNF of the grammar be included in the

compiler source code.

Duffy and Malloy describe an approach to grammar

recovery for a dialect of the C++ language; the current

paper is an extension of this previous research. An

advantage of their approach is that the grammar need not be

hard-coded in the parser, and given parse trees for the

language, their approach is fully automated. However, their

approach does require an existing parser, and to generate the

parse trees, they may have to modify the parser by inserting

probes into the semantic actions of the parser. Furthermore,

their approach to introduction of left recursion in place of

iteration requires a priori knowledge of the grammar.

Grammar Recovery from a Language Reference Manual

and Code Samples deals with grammar recovery from a

language reference manual, and possibly, code samples.

La¨mmel and Verhoef observe that the manual can be either

a compiler vendor manual or an official language standard.

Moreover, the language is explicated either through code

samples, through general rules, or through a combination of

both samples and rules.

They present a semi-automated approach to grammar

recovery that uses a language manual and a test suite. They

use the manual to construct syntax diagrams for the

language, correct the diagrams, write transformations to

correct connectivity errors, and then, use the test cases to

further correct the generated grammar.

There are several advantages to their approach. The first

advantage is that the grammar can be recovered quickly; for

example, recovery of a COBOL grammar required only two

weeks effort. A second advantage of their approach is that

their grammar recovery technique is not connected to a

specific parser implementation. A disadvantage of their

approach is that many phases of the recovery process are

manual.

Using both positive and negative code samples, they

systematically search for valid parse trees, stopping when

either the parse tree produces a context-free grammar that

accepts all positive code samples and rejects all negative

code samples, or when the search is exhausted.

In Semi-automated grammar recovery [2] an approach to

the construction of grammars for existing languages was

proposed. This approach was simple. For, the grammars are

already written, they only had to extract them and transform

them into the correct form. More precisely, the following

steps were taken:

 raw grammar extraction from a language reference, a

compiler or another artefact;

 resolution of static errors such as unconnected

nonterminals, also called sort names, if the grammar is

extracted from a non-executable source;

 extraction or definition of lexical syntax;

 test-driven correction and completion of the raw

grammar if necessary;

 beautification;

 modularization;

 disambiguation if necessary;

 generation of a browsable version of the grammar if

needed;

 Adaptation of the grammar for the intended purpose

(e.g., renovation).

An object-oriented focused refactoring tool which when

given a set of objects is able to produce an equivalent set,

without duplication of methods or certain expressions by

replacing inheritance hierarchies and factoring out

expressions [7]. The inherent benefit of fully auto-mated

refactoring is that it reduces the amount of user interaction

required for larger system programs and may result in a

more comprehensive transformative process.

The Grammar Recovery Kit illustrates options for

automation and corresponding tool support in the context of

developing quality language references that readily cater for

the derivation of parsers [4].

GRK provides the proof-of-concept for two notions: (i)

semi-automatic grammar recovery; (ii) language-reference

re-engineering. GRK’s support for semi-automatic grammar

recovery means that GRK can be used to obtain a relatively

correct and complete as well as implementable grammar

from a language reference. GRK’s support for language-

reference re-engineering means that GRK can be used to

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

update the original language reference such that it reflects

the completed and corrected grammar knowledge.
In this project we present the design and implementation

of a technique for reverse engineering, or recovering, a

grammar from existing language artefacts. Throughout this

project we use the term grammar recovery to refer to the

extraction, assessment and testing of a grammar from

existing language artefacts.

Grammarware comprises grammars and all grammar-

dependent software. The term grammar is meant here in the

sense of all established grammar formalisms and grammar

notations including context-free grammars, class dictionaries,

and XML schemas as well as some forms of tree and graph

grammars. The term grammar-dependent software refers to

all software that involves grammar knowledge in an essential

manner. Archetypal examples of grammar-dependent

software are parsers, program converters, and XML

document processors.

The term grammar is used in the sense of all established

grammar formalisms and grammar notations including

context-free grammars, class dictionaries, and XML schemas

as well as some forms of tree and graph grammars.

Grammars are used for numerous purposes, for example, for

the definition of concrete or abstract programming language

syntax, and for the definition of exchange formats in

component-based software applications.

An important aspect of any language is its grammar. A

grammar is the formal specification of the syntactic structure

of a language. Such specifications are indispensable inputs to

parser generators, like Lex and Yacc, or other generic tools,

such as programming environment generators. Grammars are

omnipresent in software engineering. Not solely in the

language technology field, but also in other areas.

Once we obtain the parse trees, grammar recovery from

those parse trees is automated. Because our technique for

grammar recovery is based on parse trees, which are

frequently utilized for testing and debugging of language-

dependent software, we also believe that the technique can be

applied successfully elsewhere. In addition to grammar

recovery, we address refactoring of a recovered grammar.

Our work on refactoring a recovered grammar is motivated

by problems that result from recovering a grammar from a

compiler source, such as a hard-coded parser. In particular,

we present a metrics-guided approach to refactoring an

iterative grammar to obtain a recursive grammar. In this

approach, we leverage the grammar metrics presented by

Power and Malloy. While our approach does require human

input to identify candidate nonterminals for refactoring,

computation of the metrics and refactoring of the identified

candidate nonterminals are both fully automated.

II. PROPOSED METHODOLOGY

An overview of our system, which consists of two major

subsystems: the parse tree recovery subsystem and the

grammar recovery and refactoring subsystem. The parse tree

recovery subsystem is shown in Fig. 1.1(a), and the grammar

recovery and refactoring subsystem, grecovery, is shown in

Fig. 1.1(b). It takes as input one or more C++ source files

and produces as output the corresponding parse tree(s)

encoded in XML.

To create parse2xml, we instrumented the source tree. The

source code in cp/parser.c implements a hand-written,

backtracking recursive descent parser. The postprocessor, in

the middle of fig. 1.1, is a 233 line C++ program that

converts an annotated parse tree to the actual parse tree. We

implemented postprocessor to perform this conversion in two

steps.

In the first step, we backpatch delayed parse subtrees.

Parse2xml emits member function bodies and their default

parameter lists after the class that contains these constructs,

so we must backpatch the member function bodies and

default parameter lists into the appropriate class to obtain a

structurally correct parse tree. The second step performed by

postprocessor is to commit or rollback the subtrees that result

from tentative parsing.

Each annotated parse tree indicates which tentatively

parsed subtrees were accepted (and thus, should be

committed) as well as which tentatively parsed subtrees were

rejected (and thus, should be rolled back, or eliminated). In

this second step, we remove these annotations and possibly

the annotated subtrees. The output of postprocessor is a

structurally correct, XML-encoded parse tree.

We provide the XML-encoded parse trees produced and

given as input to the grecovery system. In the Recover

Grammar class, we implement the grammar recovery

algorithm. The output of this class is an Iterative Grammar,

which we provide both to SynQ and the Refactor Grammar

class. SynQ is a metric computation system for grammars we

use SynQ to compute the size metrics exploited by our

methodology. The human shown in the lower right must

review the size metrics computed by SynQ to identify

Candidate Nonterminals. Once the candidates are identified,

they are provided, along with the Iterative Grammar, to the

Refactor Grammar class. This class implements the grammar

refactoring algorithm and produces as output a Recursive

Grammar.

(a)

(b)

Fig. 1: System Overview: fig. 1 (a) is the steps for Parse Tree Recovery and

(b) tells the steps for Grammar Recovery and Refactoring.

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

A. Methodology for grammar recovery and Refactoring:

We describe a technique for automatic grammar recovery

from parse trees and a metrics-guided approach to semi-

automatic grammar refactoring. Our approach to grammar

refactoring comprises three steps:

i. Computation of grammar metrics,

ii. Analysis of the metrics to identify candidate

nonterminals to be transformed by replacing iteration with

left recursion, and

iii. Transformation of the candidate nonterminals.

 The first and third steps are fully automated; the second

step is manual.

A parse tree captures the derivation of a sentence from a

language, that is, a parse tree encodes the productions of a

grammar that are exercised by the sentence in the language

from which the parse tree is derived. Thus, a parse tree

encodes an instance of the grammar, a partial grammar, for

the language, and we can recover a partial grammar for a

language from a parse tree. By taking the union of two partial

grammars, that is, the union of the productions in the two

partial grammars, we can recover a grammar that captures

the productions encoded in each of the corresponding parse

trees.

Depending on the parsing technology used by the parser

that generates the parse trees, we might recover an iterative

grammar rather than a recursive grammar. Because all

possible production right-hand sides are expressed explicitly

for a non-terminal written using iteration, a recovered

iterative grammar will generate only a subset of the

intended language unless an exhaustive test suite is used in

conjunction with the grammar recovery technique.

B. Grammar Recovery from Parse Trees:

Our methodology for automatic grammar recovery

minimally requires as input a single parse tree but can accept

multiple parse trees with no modification. For simplicity, in

this section, we describe the recovery of a (partial) grammar

from a single parse tree.

The Grammar recovery algorithm is as follows

1. grammar = { }

2. recover_production(node)

3. production = [node]

4. foreach n in node.children

5. production.append(n)

6. return production

7.

8. recover_grammar(root)

9. nodes = {root}

10. foreach n in nodes

11. If n is interior node

12.

 grammar.add(recover_production(n))

13. nodes.add(n.children)

14. nodes.remove(n)

Line 1 of the algorithm lists the declaration for the

global set grammar, which holds the recovered grammar.

The grammar we recover using our algorithm is

represented as a set of lists, where each list represents a

production.

In line 9 of the algorithm, a set node is initialized to

include only the root node. The loop that begins in line 10

adds the children of the current node n to nodes each time an

interior node of the parse tree is encountered. Further, as an

interior node corresponds to the left-hand side of a

production, each such node is passed to the

recover_production subroutine in line 12 of algorithm. The

result of the subroutine call, a production in list form, is

added to grammar. Upon termination of the

recover_grammar subroutine, the grammar encoded by the

parse tree is stored in grammar.

III. RESULT

Fig. 2: Parse Tree

The above figure shows the parse tree for which the

grammar is to be recovering. This parse is entered into the

program as input.

Fig. 3: Generated XML

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

The fig. 3 shows the generated xml as an output. The parse

tree (in fig. 2) is inputted to the program and we get xml as

output from that program.

Fig. 4: Grammar Recovery

The fig. 4 shows the grammar that is recovered for the

parse tree (in fig. 2). XML is entered to the program as input

and grammar is generated as output after processing.

Fig. 5: Iterative Grammar

The fig. 5 shows the iterative grammar before

refactoring. An iterative grammar is one that which contains

a nonterminal expressed using iteration or nonterminal

expressed using left or right recursion. If a grammar contains

both kinds of nonterminal, we refer to it as iterative. An

iterative grammar is illegible to the average software

developer; further, an iterative grammar is more verbose than

the corresponding recursive grammar. Finally, multiple

implementations of an iterative grammar can result in distinct

versions of the grammar because iteration must be bounded

and the bound is an implementation-defined value.

Fig. 6: Recursive Grammar

The fig. 6 shows the recursive grammar after refactoring.

As iterative grammar is not useful for any work

therefore we apply refactoring on it and generate a recursive

grammar. We define a recursive grammar as one that

contains a nonterminal expressed using left or right recursion.

IV. CONCLUSION

The methodology is comprised of manual

instrumentation of the parser, a technique for automatic

grammar recovery from parse trees, and a semi-automatic

metrics-guided approach to refactoring an iterative grammar

to obtain a recursive grammar. We presented algorithms for

recovering a grammar from a parse tree and for rewriting

nonterminals expressed using iteration with left recursion.

We also investigated the use of grammar size metrics for

identifying candidate nonterminals for refactoring and found

that, by refactoring the identified nonterminals.

In particular, no previously published research describes a

methodology for grammar recovery from a hard-coded parser.

Moreover, there is no published research that describes an

approach for refactoring an iterative grammar to obtain a

recursive grammar.

REFERENCES

[1] A. Sellink and C. Verhoef, “Generation of Software Renovation
Factories from Compilers” Proc. 15th IEEE Int’l Conf. Software

Maintenance, pp. 245-255, 1999.

[2] R. La¨mmel and C. Verhoef, “Semi-Automatic Grammar Recovery,”
Software: Practice and Experience, vol. 31, no. 15, pp. 1395-1438, Oct.

2001.

[3] R. Lammel and C. Verhoef, “Cracking the 500-Language Problem,”
IEEE Software, vol. 18, no. 6, pp. 78-88, Nov./Dec. 2001.

[4] Ralf L¨ammel “The Amsterdam toolkit for language archaeology”,

2004.
[5] P. Klint, R. La¨mmel, and C. Verhoef, “Toward an Engineering

Discipline for Grammarware,” ACM Trans. Software Eng. And

Methodology, vol. 14, no. 3, pp. 331-380, 2005.
[6] E.B. Duffy and B.A. Malloy, “An Automated Approach to Grammar

Recovery for a Dialect of the C++ Language,” Proc. 14th Working

Conf. Reverse Eng., pp. 11-20, 2007.
[7] E. Bouwers, M. Bravenboer, and E. Visser, “Grammar Engineering

Support for Precedence Rule Recovery and Compatibility,” Proc.

Seventh Workshop Language Descriptions, Tools, and Languages, pp.
82-96, Mar. 2007.

[8] Jingfeng Peng, “Semi Automated Refactoring Applied to the C

Programming Language,” 2008.

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

Sachin Singh received B.Tech degree in Computer Science &

Engineering from Uttar Pradesh Technical University in 2010 and M.Tech

degree in Computer Science & Engineering from SRM University, NCR
Campus, in 2012.

A.Kulothungan received M.E degree in Computer Science &
Engineering. He is currently working as an Assistant Professor in the

Department of Computer Science & Engineering at SRM University, NCR

Campus, Modinagar.

