
International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 3 -Issue 4, June 2015

Available Online at: www.ijcam.com

Drishti – Automated Machine Interface
Biswarup Nandi

#1
, Souvik Sur

*2
, Upasana Roy Chowdhury

#3
,Romit Beed

#4

Abstract— The project ―DRISHTI‖ has been developed to

provide computer access, without requiring any hardware

interface. The system tracks the computer user’s movements

with a webcam and translates them into the movements of the

mouse pointer on the screen. Portions such as the tip of the nose

or finger can be tracked with high rate of success. This is based

on cropping a template of the tracked feature from the current

image and testing where this template is in the subsequent frame.

The location of the highest match is interpreted as the new

location of the feature in the subsequent image and the next

image frame is then loaded for further processing.

Keywords— Tracking of webcam data, Extracting templates,

Matching of templates, Returning the current position of the

sample template, Controlling the cursor

I. INTRODUCTION

Computer vision is the science and technology of

machines that see. As a scientific discipline, computer vision

is concerned with the theory behind artificial systems that

extract information from images. The image data can take

many forms, such as video sequences, views from multiple

cameras, or multi-dimensional data from a medical scanner.

As a technological discipline, computer vision seeks to apply

its theories and models to the construction of computer vision

systems. Examples of applications of computer vision include

systems for:

 Controlling processes (e.g., an industrial robot or an

autonomous vehicle).

 Detecting events (e.g., for visual surveillance or

people counting).

 Organizing information (e.g., for indexing databases

of images and image sequences).

 Modeling objects or environments (e.g., industrial

inspection, medical image analysis or topographical

modeling).

 Interaction (e.g., as the input to a device for

computer-human interaction).

II. HUMAN COMPUTER INTERFACE

A basic goal of HCI is to improve the interactions between

users and computers by making computers more usable and

receptive to the user's needs. Specifically, HCI is concerned

with:

 Methodologies and processes for designing interfaces

(i.e., given a task and a class of users, design the best

possible interface within given constraints,

optimizing for a desired property such as learnability

or efficiency of use)

 Methods for implementing interfaces (e.g. software

toolkits and libraries; efficient algorithms)

 Techniques for evaluating and comparing interfaces

 Developing new interfaces and interaction techniques

 Developing descriptive and predictive models and

theories of interaction

A long term goal of HCI is to design systems that

minimize the barrier between the human's cognitive model of

what they want to accomplish and the computer's

understanding of the user's task.

III. APPROACH

The system can be broken into two main sub

systems - Template matching and Tracking.

Template matching is a technique in digital image

processing for finding small parts of an image

which match a template image. It can be used in

manufacturing as a part of quality control, a way to

navigate a mobile robot, or as a way to detect edges

in images. Tracking is to track moving objects

through a sequence of images.

A. Template Matching

1) Feature-based approach: If the template image has

strong features, a feature-based approach may be considered;

the approach may prove further useful if the match in the

search image might be transformed in some fashion. Since this

approach does not consider the entirety of the template image,

it can be more computationally efficient when working with

source images of larger resolution, as the alternative approach,

template-based, may require searching potentially large

amounts of points in order to determine the best matching

location.

2) Template-based approach: For templates without strong

features, or for when the bulk of the template image

constitutes the matching image, a template-based approach

may be effective. As aforementioned, since template-based

template matching may potentially require sampling of a large

number of points, it is possible to reduce the number of

sampling points by reducing the resolution of the search and

template images by the same factor and performing the

http://en.wikipedia.org/wiki/Industrial_robots
http://en.wikipedia.org/wiki/Autonomous_vehicle
http://en.wikipedia.org/wiki/People_counter
http://en.wikipedia.org/wiki/Computer-human_interaction
http://en.wikipedia.org/wiki/Usable
http://en.wikipedia.org/wiki/Library_%28computer_science%29
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Interaction_techniques

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 3 -Issue 4, June 2015

Available Online at: www.ijcam.com

operation on the resultant downsized images (multiresolution,

or pyramid, image processing), providing a search window of

data points within the search image so that the template does

not have to search every viable data point, or a combination of

both.

3) Motion tracking and occlusion handling: In instances

where the template may not provide a direct match, it may be

useful to implement the use of eigenspaces – templates that

detail the matching object under a number of different

conditions, such as varying perspectives, illuminations, color

contrasts, or acceptable matching object ―poses‖. For

example, if the user was looking for a face, the eigenspaces

may consist of images (templates) of faces in different

positions to the camera, in different lighting conditions, or

with different expressions.

It is also possible for the matching image to be obscured,

or occluded by an object; in these cases, it is unreasonable to

provide a multitude of templates to cover each possible

occlusion. For example, the search image may be a playing

card, and in some of the search images, the card is obscured

by the fingers of someone holding the card, or by another card

on top of it, or any object in front of the camera for that

matter. In cases where the object is malleable or poseable,

motion also becomes a problem, and problems involving both

motion and occlusion become ambiguous. In these cases, one

possible solution is to divide the template image into multiple

sub-images and perform matching on each subdivision.

4) Template-based matching and convolution: A basic

method of template matching uses a convolution mask

(template), tailored to a specific feature of the search image,

which is to be detected. This technique can be easily

performed on grey images or edge images. The convolution

output will be highest at places where the image structure

matches the mask structure, where large image values get

multiplied by large mask values.

This method is normally implemented by first picking out

a part of the search image to use as a template: The search

image is named as S(x, y), where (x, y) represent the

coordinates of each pixel in the search image. The template is

named as T(x t, y t), where (xt, yt) represent the coordinates of

each pixel in the template. The centre (or the origin) of the

template T(x t, y t) is then simply moved over each (x, y)

point in the search image and the sum of products between the

coefficients in S(x, y) and T(xt, yt) are calculated over the

whole area spanned by the template. As all possible positions

of the template with respect to the search image are

considered, the position with the highest score is the best

position. This method is sometimes referred to as 'Linear

Spatial Filtering' and the template is called a filter mask.

For example, one way to handle translation problems on

images, using template matching is to compare the intensities

of the pixels, using the SAD (Sum of absolute differences)

measure[1].

A pixel in the search image with coordinates (xs, ys) has

intensity Is(xs, ys) and a pixel in the template with coordinates

(xt, yt) has intensity It(xt, yt). Thus the absolute difference in

the pixel intensities is defined as Diff(xs, ys, x t, y t) = | Is(xs,

ys) – It(x t, y t)

The mathematical representation of the idea about looping

through the pixels in the search image as the origin of the

template is translated at every pixel and SAD measure

calculation is the following:

Srows and Scols denote the rows and the columns of the search

image and Trows and Tcols denote the rows and the columns of

the template image, respectively. In this method the lowest

SAD score gives the estimate for the best position of template

within the search image. The method is simple to implement

and understand, but it is one of the slowest methods. Example

 + =

(a)The first image of the (b)The (c)The template matched

object second in the object

 image

B. Extraction and Tracking

The proposed motion tracking system consists of four main

modules

1) Tracking of webcam data: This module deals with

webcam interface. In this module, the data is acquired and the

webcam is interrupted accordingly when the frames are

required for further processing.

http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Edge_detection
http://en.wikipedia.org/wiki/Spatial_filter
http://en.wikipedia.org/wiki/Spatial_filter
http://en.wikipedia.org/wiki/Spatial_filter
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Sum_of_absolute_differences
http://en.wikipedia.org/wiki/Absolute_difference

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 3 -Issue 4, June 2015

Available Online at: www.ijcam.com

2) Extracting templates: This module serves to

detect the original template, within the viewing area

of the camera in the working space, provided by the

user or automatically generated. The input is a

sequence of images captured by the camera, and the

output states whether or not any template has been

detected and stores it as the original template.

3) Template matching: This module serves to

detect the original template, within the viewing area

of the camera in the working space, provided by the

user or automatically generated. The input is a

sequence of images captured by the camera, and the

output states whether or not any template has been

detected and stores it as the original template.

Fig. 1 Template matching using Neighbourhood Window

4) Motion template matching and tracking: The

purpose of this module is to find the new location

of the moving template within the viewing area of

the camera in the workspace. This module is the

most critical part of the motion tracking system and

its performance greatly affects the accuracy of the

final output of the motion tracking system. For the

motion tracking system, as a real-time system,

tracking speed is crucial. Therefore, the motion

template matching methods that are implemented

must be fast and efficient. Two alternative motion

template matching methods, the neighbourhood

window method [2] and the motion window

method, have been implemented. The motion

window method is activated in cases where the

neighbourhood window method fails to find the

moving object. Both methods are fast and accurate,

and have been implemented using parallel

computing techniques to ensure that the

computation time is acceptable. In the following

two subsections the concepts and aspects of the two

alternative motion template matching methods are

presented.

Neighbourhood Window Method

Once the motion template is created, the motion

tracking system begins motion template matching and

tracking. In order to have a good template matching speed, the

algorithm does not search the whole image. Rather searches

the area of the image that most likely has the new position of

the moving object. This area is located in the surrounding

neighbourhood of the moving object’s previous position; this

area is called the neighbourhood window (see Figure 13). The

correlation score is calculated by computing the sum of the

absolute difference of pixels between the motion template and

the neighbourhood window. The size of the neighbourhood

window can be varied for different tracking systems.

The following are the general processing steps of the

neighbourhood window method:-

1. Choose the neighbourhood window size, i.e. width =

template_width + 4 and length = template_length + 6, and

expand the motion template evenly on each side.

2. Compute the sum of pixel correlation values between the

motion template and the matching region in the new image.

The computed sum value is the correlation score of this

region.

3. Repeat step 3, but move the matching region one pixel

towards the right (if it is at the end of the row, move to the

next row) until the whole neighbourhood window has been

processed.4. Compare all the correlation scores and save the

best correlation score of that block, and the position of that

matching region is the new position of the moving object.

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 3 -Issue 4, June 2015

Available Online at: www.ijcam.com

Fig. 2 The figure shows the neighbour window, the previous position of the
motion template and matching region.

IV. PROJECT ALGORITHM AND FLOWCHART

A. Algorithm

step-0 : start

step-1 : image acquisition

step-2 : next frame acquisition

step-3 : convert frame to pixels

step-4 : find frame difference

step-5 : set threshold value

step-6 : template matching

step-7 : bounding box for template

step-8 : if don't want to continue go to step-12

step-9 : template update

step-10: update cursor location

step-11 : got to step-2

step-12 : stop video

step-13 : end

B. Flowchart

C. Details of the Algorithm
In order to implement this algorithm, the software tools

selected are from the MATLAB Image Processing Toolbox

(IPT), which occupies a position of eminence in both

educational and industrial applications.

1) Image Acquisition:

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 3 -Issue 4, June 2015

Available Online at: www.ijcam.com

 First the algorithm clears all variables and

functions from memory and closes all open

figure windows and clears the command

window. All this is done to ensure robustness of

system.

 Then video input object is created and then the

video input object trigger settings are

configured. Then it starts the timer running for

video acquisition. Then it is paused for 2

seconds as in the first few seconds, web camera

gives black frames as it needs some time to

implement the settings configured.

2) Extraction of template for matching:

 After the pervious step is done the user is

requested to choose any one way to specify the

template.

 When the template is chosen, it is stored as the

original template, otherwise continue to show

the original frames

 If the template is provided it is marked with a

minimum bounding box and a neighborhood box.

3) Matching of templates in subsequent image frames

 A threshold value is set to distinguish clearly the

fairly matching template from the poorly

matching ones.

 Next, neighborhood window for the template is

created , taking into account the fact that the

webcam is around 10 fps, so the movement of

the feature (if any) would be minimum and

mostly within the neighborhood box.

 Now comparison is done between the template

and the extracted templates from the

neighborhood box and finds the best match.

 The template is then updated as the new best

match image.

 If the rate of best match is less than the threshold

value, the template is saved and a search is done

in some subsequent frames for a better match. If

no match is found, then this frame is discarded

and only the new frame is considered.

4) Controlling the cursor

 After getting the current position of the template,

it is transformed to screen position using suitable

transformations and control the mouse pointer

accordingly.

 Then the algorithm aims to show the current

frame with the traced template, and mark it

accordingly. The loop is continued until the user

clicked ―stop‖. This way the current frame

becomes the old frame for the next iteration of

the tracking loop.

When the user clicks on the feature to be tracked, a

square is drawn around the feature and the sub image within

this square is cropped out of the image frame. The cropped

sub image is used as a ―template‖ to determine the position of

the feature in the next image frame. To find this position, the

tracking algorithm uses the template to search for the feature

in a ―neighbourhood window‖ that is cantered at the position

of the feature in the previous frame. The template is shifted

through this search window and correlated with the underlying

sub images. The window is defined to contain the centres of

all sub images tested.

Each sub image in the search window is matched

with the template sub image that is cropped from the previous

frame. As a measure of match, the normalized correlation

coefficient

Where, and

and A is the number of pixels in template.

To quantify tracking performance, a match between a

template and the best-matching subimage within the search

window is called sufficient if the normalized correlation

coefficient is at least 0.8. Correlation coefficients below 0.8

describe insufficient matches. Insufficient matches occur

when the feature cannot be found in the search window

because the user moved quickly or moved out of the camera’s

field of view.

V. CONCLUSION

A. Uses
It can be used in various places like:

 It can provide ways for computer human interface.

 It can primarily be used by physically disabled

people to automate their interface.

 It can be used in now-a-days evolving smart

classrooms for better interface. Since it uses a limited

no of resources it can run at par with various soft

wares under different hardware constraints.

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 3 -Issue 4, June 2015

Available Online at: www.ijcam.com

B. Screenshots

Fig. 3 The main screen of drishti. It contains the START STOP and
SETTINGS options

Fig. 4 Virtual keyboard

Fig. 5 Settings Screen-1

Fig. 6 Settings Screen-2

Fig. 7 Tracking the object

C. Future Scope:
To trace the eye movement of the user the algorithm can be

modifies to trace eye gaze and that can be again used for a

very efficient interface and can also play a vital role in

intelligent systems. Secondly, the efficiency is moderate, but,

if the algorithm is optimized a bit more, it might lead to a

more efficient system design. Some more features can be

incorporated to this software to make it functionally richer.

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 3 -Issue 4, June 2015

Available Online at: www.ijcam.com

VI. REFERENCES

[1]. Ankit Kumar, Ashish Joshi, Anil Kumar3,

Ankush,Mittal4 and D R Gangodkar5‖ Template

Matching Application In Geo-Referencing Of

Remote Sensing Temporal Image‖, International

Journal of Signal Processing, Image Processing and

Pattern Recognition Vol.7, No.2 (2014), pp.201-

210

[2]. Rafael C. Gonzalez ―Digital Image Processing

using MATLAB‖, Tata McGraw-Hill Education

Private Limited, India, pp.74-78, 2010, ISBN:

13:978-0-07-070262-2.

	br6erhy-5

