
International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 2-Issue 9, July 2014

Available Online at: www.ijcam.com

Dependable Fault-Tolerant Based Software Architectures

 Vasudevan Janarthanan

 Department of Information Technology

 Fairleigh Dickinson University

 v_janart@fdu.edu

Abstract -- Dependable software architectures determine the

method of integrating a fault tolerance technique with a given

system in order to make the system dependable. Dependable

architectures demonstrably possess properties such as safety,

security, and fault tolerance. Enriching software architecture

descriptions by including dependability attributes will enable

and facilitate the reuse of software components. This paper

summarizes the different trends in the development of

dependable software architecture along with their inherent

limitations. The possible modifications to these existing

architectures are also illustrated in order to improve

sufficiently the dependability features of a software system.

Keywords – Software Architectures, Dependability, Fault

Tolerance, Safety, Security.

I. INTRODUCTION

As the size and complexity of software systems

increase, the design and specification of the overall system

structure become more significant than the choice of

algorithms and data structures of computation. The various

structural issues of the system then form the software

architecture at the design level [14]. Abstractly, software

architecture involves the description of elements from which

systems are built, interactions among those elements,

patterns that guide their composition, and constraints on

these patterns. The architecture of a software system defines

that system in terms of computational components and

interactions among those components. In addition to

specifying the structure and topology of the system, the

architecture shows the correspondence between the system

requirements and elements of the constructed system,

thereby providing the rationale for the design decisions.

Since most of the modern computing systems require

evolving software built from existing software components,

developed by independent sources, the construction of

systems with high dependability requirements out of

software components represents a major challenge, since few

assumptions can generally be made about the level of

confidence of external components. Dependability is the

property of a computing system that allows reliance to be

justifiably placed on the service it delivers. When software

products are deployed in a high-integrity system, their

dependability profile is key to the survivability of the

system. In this context, an architectural approach for fault

tolerance is necessary in order to build dependable software

systems assembled from untrustworthy components [9, 13].

Enriching software architecture descriptions by including

dependability attributes will enable and facilitate the reuse of

software components [12, 16]. Also, the structure of a

dependable architecture makes clear how to compose a

dependable system from a base system.

Rest of the paper is organized as follows: In section II,

issues related to the development of dependable software

architecture is briefly discussed. Section III presents various

architectural limitations, acting as a catalyst for future

research and motivation for newer solutions. In section IV,

the current approaches in resolving some of the limitations is

introduced. Also, an in-depth analysis on each of those

approaches is provided with the rational for each one of

those approaches.

II. ISSUES RELATED TO DEVELOPMENT OF

DEPENDABLE SOFTWARE ARCHITECTURE

In order to improve the effectiveness of software fault

tolerance some problems need to be addressed. Among them

are the high costs (both the run-time overhead and design

cost), the ability to evaluate the impact of software fault

tolerance structures and the usually very limited flexibility of

software fault tolerance designs and their consequent

inability to adapt to changing run-time conditions. But the

most formidable obstacle in realizing dependable software

architectures is the need to demonstrate that a centralized

architecture failure cannot bring about simultaneous loss of

functions utilizing shared resources [16].

Fault tolerance, reliability, and availability are

characteristics that are intimately interdependent. In order to

have dependable software architecture, not a single

component but the entire software system needs to be fault-

tolerant [7, 8]. Existing architectural styles, such as client-

server, may not represent fault-tolerant mechanisms that

allow obtaining trustworthy components from untrustworthy

ones. Instead, new forms for representing software systems

are necessary if there is the need to deal with dependability

related architectural mismatches, which might be associated

with the necessity for obtaining dependable services from

untrustworthy components [10].

One of the problems when building large-scale software

systems out of existing software components are the

architectural mismatches that might occur between system

components [5]. An architectural mismatch occurs when the

assumptions that a component makes about another

component do not match. Mismatches occur when building

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 2-Issue 9, July 2014

Available Online at: www.ijcam.com

dependable system out of untrustworthy components, which

is essentially an evolution problem since the system, its

components, and their interactions have to change according

to the required dependable needs.

From the description of fault tolerant software

architecture, it is clear that the software properties are an

integral part of the fault tolerance aspects of a system, but in

literature the researchers have left undefined a number of

parameters indispensable for the configuration, deployment

and correct functioning of the corresponding fault tolerant

mechanism [12]. Such parameters include the degree of

replication for a given failure probability of the software,

hardware constituents of a system, and specific load-patterns.

Architecture for a large, complex system, and even

some simple systems, will involve multiple levels of detail

expressed in multiple architectural styles. The problem of

gaining confidence in the correctness of the implementation

is especially acute in the case of dynamic, dependable

architectures, where exhaustive testing of architectural

configurations is frequently prohibitively expensive [16].

Software fault tolerance has been traditionally attacking

the practical aspect of a dependable system, basically the

conception, design and implementation of fault tolerant

mechanisms that can be used to confront a variety of failure

events [12]. So when the scale of the software architecture is

small and simple, it is manageable to use the product of

software fault tolerance to obtain the desired dependability

properties for the architecture. But in the case of large-scale

distributed systems (architectures), the direct integration of a

fault tolerance mechanism to obtain the desired

dependability guarantees is no longer attainable.

III. LIMITATIONS AND MOTIVATION

The software architecture community has made great

strides towards characterizing and capturing system

descriptions appropriately and towards providing linguistic

support for defining families of software products, but

current Architectural Description Languages (ADLs) and

their associated methodologies (like SADL) do not

adequately address dependability [16]. So, there is a need to

look into the aspects of design of an ADL that would

ultimately guarantee reliability of the software architecture.

Fault tolerance at the architectural level is an area that

has recently gained considerable attention [8]. Most of

existing works in this area emphasize the creation of fault

tolerance mechanisms and description of software

architectures with respect to their dependability properties

[12, 16]. Providing means to support the systematic analysis

of fault tolerance software properties, and the reasoning on

the correctness of their integration within software

architecture is a crucial thing to concentrate on.

While specifying fault tolerance properties and software

security, current works have problems in systematically

combining security constraints with fault tolerance

properties [12, 15]. In specific cases, the priority between

those two nonfunctional aspects can be deduced by the

correctness of their combination in a given order. Hence

there is a need to look more closely into the combinations of

fault tolerance software properties with other nonfunctional

and algorithmic software aspects.

Software architectures do not provide the means to

facilitate analysis of the system’s dependability requirements

in order to identify the corresponding fault tolerant

mechanism, and to integrate it with the system architecture

[13]. These facts give rise to an emerging need to provide

support for the correct system design, which integrates

dependability considerations in the system architecture.

The development of dependable software architecture is

not based on inventing the mechanism that provides the

desired dependability guarantees; rather, it is based on

selecting from the existing techniques the one that best

meets the system’s dependability requirements [1, 16].

Hence there is a need for a more formal method of arriving

at the conclusion of a particular technique in order to

establish the reliability features of software architecture.

IV. CURRENT APPROACHES AND THEIR RATIONALE

A. Designing dependable software architectures using

architectural prescriptions from goal oriented

requirements specification [3,4]:

A prescription allows the architect to reuse all the

components and the topology that are derived from

particular goals (requirements), including dependability

requirements [3, 4]. Generally, a new system design has a

higher likelihood of failure than a well tested one. Another

way that an architectural prescription favors the design of

dependable systems is by enabling the reuse of the high level

design of systems that, having been already deployed and

demonstrated to be dependable. An architectural prescription

lays out the space for the system structure by selecting the

architectural components (processes, data, and connectors),

their relationships (interactions) and their constraints. KAOS

[11] is normally used as a goal oriented requirements

specification language and Architecture Prescription

Language (APL) is used to derive an architectural

prescription from the KAOS requirements.

In a prescription, the fundamental characterization of

components is given by the goals they are responsible for.

Components are further characterized by their type,

processing, data or connector. The processing components

are those that provide the transformation on the data

components. The data components contain the information

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 2-Issue 9, July 2014

Available Online at: www.ijcam.com

to be used and transformed. The connector components,

which may be either implemented by data components,

processing components or a combination of both, are the

glue that holds all the pieces of the system together. The

interactions of the components among each other, together

with the restriction of their possible number of instances

characterize the topology of the system. At the beginning,

some candidate components for the architecture are

proposed, and then the functional and non-functional goals

are assigned, one at a time, to a subset of the potential

components. Those components who do not contribute to the

achievement of any goal are discarded from the system.

KAOS is composed of: Objects, Agents, Entities,

Events, Relationships, Operations, Goals, Requisites and

Assumptions. The high-level goals are gathered from the

users, domain experts and existing documentation. These

goals are then AND/OR refined till the goals achievable by

some agents are derived. For each goal the objects and

operations associated with it are identified. Each entity in

KAOS that refers to a subset of the system specification can

be corresponded to an APL entity that describes the

constraints on the software architecture. Each object in the

requirements generally corresponds to a component in the

architecture. More specifically, an agent object corresponds

to either a process or a connector. The events relevant to the

architecture of the system are those internal to the software

system. An entity corresponds to a data element, which has a

state that can be modified by active objects. A relation

corresponds to another type of data element that links two or

more other objects. A goal is a constraint on one or more of

the components of a software system. This higher-level

architecture specification (APL) can be easily translated into

an architecture description, in the solution domain.

B. Use of Object Oriented design and certain

architectural properties for designing true fault

tolerant software architecture [15]:

The distinct architectural properties of Canadian

Automated Air Traffic System (CAATS) are used to achieve

fault tolerance in software architectures [15]. A distinct

property of CAATS is the existence of several lightweight

object oriented frameworks. CAATS approach to fault

containment is based on an observation that large grain

objects offer a natural boundary for fault containment. For

containment to be successful, an action needs to be taken

such that further deterioration of the system is avoided. In an

Air Traffic Control, for example, Flight is the essential large

grain object, and while evaluating a method on a Flight

object, if a residual bug is encountered, the system should

mark that particular Flight object as erroneous, warn the

human operator about it, and continue successful support of

all other Flights as if nothing had happened.

CAATS strategy for dealing with residual software bugs

transforms latent defects into operator workload in a balance

manner – the increase in workload is proportional to the

severity of the fault. One of the frameworks in CAATS

called Pivot provides environment for implementing

societies of cooperating objects. Pivot is object oriented

infrastructure element in between traditional object oriented

programming systems and the object oriented application

frameworks. It is an environment where a family of objects

is submerged, providing a means to both create and destroy

objects and a means for an object to exhibit its autonomous

behaviour. In this way Pivot plays a crucial role in providing

systematic and orderly means for fault containment.

Object behaviour in Pivot is supported by a “sense of

time” wherein the infrastructure provides a means for an

object to periodically execute a private method, “social

responsibilities” wherein the infrastructure supports methods

sensitive to events produced by other objects in the society,

and the “asynchronous interaction” wherein the

infrastructure encourages interaction between objects.

The fault containment by the object-oriented framework

is as follows: First it traps the exception triggered by a

residual fault, then isolates the faulty object and finally

verifies whether the containment was indeed successful or

not. The encapsulation concept of object-oriented design

offers not only to detect the residual faults in a software

system but also to contain them as well. Architectures,

which include object-oriented framework elements, have the

necessary properties for systematic and orderly degradation

of the system and the resulting increase in operator workload.

C. Providing software designers with a repository of

dependable software architectures to help them find

out requirements for the system under design to be

dependable [13]:

At first, for a given formal framework, various

dependability properties are defined which would serve to

characterize dependability behaviours of software

architectures [13]. The important point is that based on this

approach of specification of dependability properties, it

enables one to characterize the various behaviors of a system

in the presence of failure, which are attainable using existing

fault tolerance techniques. The set of these behaviors may

further be expanded as new fault tolerance techniques

emerge. Dependability properties fall into two groups:

1) Abstract properties specified in terms of system states,

which are defined independently of any fault tolerance

technique. They serve to characterize the dependability

behaviour of an overall architecture, when this

behaviour is too abstract to associate a specific fault

tolerance technique with it. Some of the abstract

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 2-Issue 9, July 2014

Available Online at: www.ijcam.com

properties are dependability, safety, availability and

reliability.

2) Concrete properties specified in terms of system actions,

whose definition is closely related to some fault

tolerance technique. They serve to characterize the

dependability behaviours associated to architectural

elements, with respect to a given fault tolerance

technique. More specific dependability properties are

Detection and Fmask, where the former characterizes

failure detection and the latter the system capability to

mask the occurrence of failures.

These properties are then formally specified using the

extended predicate logic with precedence actions. Based on

the proposed approach of the specification of dependability

properties, one can define a refinement relationship over

these properties. This relationship allows refinement of an

initial dependability requirement into more concrete

dependability properties, which ultimately correspond to the

behaviour of fault tolerance mechanisms for which an

implementation is available.

The proposed specification of dependability properties

provides means to unambiguously describe the dependability

behaviour of architecture, albeit of limited help from the

standpoint of easing the development of dependable systems.

To facilitate their use, one can attach to each dependability

property, the structure (i.e. the software architecture) of the

corresponding system with respect to the fault tolerance

technique that is used to enforce the given property.

The refinement relation over dependability properties

provides the adequate base ground to organize the repository

of dependable software architectures. The repository is

organized as a lattice structure defined according to the

refinement relation, and each node stores the acquired

knowledge about a given dependability property. For some

property P, this knowledge includes: (i) the property name,

(ii) the formal specification of the dependability property,

(iii) the set of dependability properties (through references to

adequate nodes) into which P may be refined, (iv) the

dependable software architecture AP, associated to P.

The description of dependable software architecture

includes at least the specification of the dependability

behaviour of its components, and may be extended using the

capabilities of existing ADLs (Architecture Description

Languages). Considering the proposed description of

dependable architectures, a system S may be modified so as

to enforce a given dependability property P by mapping S

onto each generic component of the architecture associated

to P while ensuring the declared dependability behaviour,

and providing an adequate implementation for the

dependability-specific components. Alternatively, the

repository of dependable architectures may further be

exploited to find out more refined architectures, which

possibly correspond to available fault tolerance mechanisms.

To systematically infer a dependable architecture from a

property specification, one can structure the specification of

dependability properties accordingly. Let P be defined as:

P (objects Oi, 1 i n; var) objects: O′i, 1 i n′;

Behaviours: Oi: Bi, 1 i m;

To infer the architecture associated to P(): it consists of

defining the interpretation of each constituent of the property

specification in terms of architectural description. The

treatment of the objects and behaviours parts of the

specification is direct: each object given in the objects list

translates into an architectural component whose type

(dependable) is the one declared in the embedding list; and

each object’s behaviour given in behaviours is attached to

the corresponding architectural component.

D. Use of SADL architectural descriptions as

hierarchies to provide a way to bridge the gap

between abstract dependable software architectural

models and their concrete implementations [16]:

It is very common to describe a single architecture, or

related class of architectures, at multiple levels of abstraction

and from a variety of perspectives [16]. Proving that an

architectural property of interest holds at an abstract level is

much easier than proving that it holds at a more concrete

level. A property that is easy to prove from a data-oriented

description may be difficult or impossible to prove from a

function-oriented description at a similar level of abstraction.

Another motivation for having several architectural

descriptions, rather than just one, is to help fill the

conceptual gap between a very abstract description of the

architecture and its fully concrete implementation. Often, it

can be difficult to determine whether an abstract

architectural description is accurately describing the

implemented architecture. Unless the description is

considered accurate, there is no reason to believe that

properties of the description will be true of the system. More

concrete architectural descriptions also provide more

guidance to system implementers and maintainers. Hence

there is a need for a new architecture description language,

called SADL that represents collections of architectural

descriptions as hierarchies, with each description linked to

others by interpretation mappings that have been shown to

guarantee consistency of the collection.

SADL architectural description hierarchies provide a

way of bridging the gap between abstract architectural

models and their concrete implementations. If a hierarchy is

developed using only refinement patterns that have been

proven to preserve certain dependability properties, then the

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 2-Issue 9, July 2014

Available Online at: www.ijcam.com

most concrete description in the hierarchy must have all the

dependability properties of the more abstract descriptions. If

it can be shown that some abstract description has a

desirable dependability property, the most concrete

description must also have that property. Since it is easy to

verify that the most concrete description matches the actual

implementation, because the most concrete description is

based on the architectural constructs employed in the

implementation, confidence that the property holds of the

implementation is easy to obtain.

Hence, if an architectural description hierarchy is

developed using verified refinement patterns, the proofs of

the patterns guarantee that a certain class of properties is

preserved. If it can be shown that one of the properties in

that class holds at any level of the hierarchy, it must hold at

every lower level, right down to the implementation level.

E. Component based approach for architecting reliable

software systems, where object oriented framework

is utilized to construct the components [7, 8, 9, 10]:

FaTC2 is an object-oriented framework, which

facilitates the construction of fault-tolerant component-based

systems by giving support to fault tolerance techniques [7, 8,

9, 10]. FaTC2 is an extension of C2.FW, an OO framework

that provides an infrastructure for building applications

using the C2 architectural style. The C2 architectural style is

a component-based architectural style, which supports reuse

and flexible system composition, emphasizing weak

bindings between components. The C2 style is used due to

its ability to compose heterogeneous off-the-shelf

components.

FaTC2 introduces forward error recovery in the original

framework by means of an exception handling system (EHS).

An EHS offers control structures, which allow developers to

define actions that should be executed when an error is

detected. This materializes by the capability to signal

exceptions and, in the code of the handler, to put the system

back in a coherent state. A forward error recovery

mechanism manipulates the state of a system in order to

remove errors and enable it to resume execution without

failing. Forward error recovery is usually implemented by

means of exception handling.

In component-based development, source code for the

components, which make up a system, might not be

available, especially if third party components are employed.

Hence, it is not possible to introduce exception handling

directly in the component. An architectural level EHS deals

with this kind of problem by providing an infrastructure for

defining exceptions and attaching the corresponding

handlers to components without the need to modify them.

In the C2 architectural style components communicate

by exchanging asynchronous messages sent through

connectors, which are responsible for the routing, filtering,

and broadcast of messages. Components and connectors

have a top interface and a bottom interface. Systems are

composed in a layered style, where the top interface of a

component may be connected to the bottom interface of a

connector and its bottom interface may be connected to the

top interface of another connector. Each side of a connector

may be connected to any number of components or

connectors. Two types of messages are defined by the C2

style: requests, which are sent upwards through architecture,

and notifications, which are sent downward. Requests ask

components in upper layers of the architecture for some

service to be provided, while notifications signal a change in

the internal state of a component.

The C2.FW framework provides an infrastructure for

building C2 applications. The C2.FW Java framework

comprises a set of classes and interfaces which implement

the abstractions of the C2 style, such as components,

connectors, messages, and interconnections. In order to

facilitate the development of fault-tolerant applications using

the C2 style, the Java version of C2.FW with the concept of

Idealized C2 Component (iC2C). The original C2.FW

framework does not provide adequate support for the

construction of fault-tolerant systems.

FaTC2 allows fault-tolerant systems to be built in a

well-organized manner, using iC2Cs as structural units. The

main advantage of this approach is the fact that framework

users do not need to implement an EHS in order to create

fault-tolerant applications. Only the functional requirements

and exception handling of the component should be defined.

FaTC2 manages connections between functional

requirements and exception handling.

F. Diversity-based software architectures for security

purposes [17 - 28]:

Security is an important attribute of software

dependability [17]. Indeed, a fault embedded in software

represents vulnerability. This may end up being successfully

exploited by an external interactive malicious fault (i.e.

attack) and ultimately enable the violation of the system

security property (i.e. security failure). Redundancy as the

traditional means to achieve fault tolerance and higher

system reliability is not effective against software faults.

That is every copy of faulty software will have an identical

behaviour when provided with the same input. This explains

the potential and interest of the diversity principle for

security purposes. The main idea is that through diversity

common vulnerabilities can be decreased if not eliminated.

As a result, it is very difficult for a malicious opponent to be

able to break into a system composed of a set of diverse

components and functionally equivalent with the very same

attack.

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 2-Issue 9, July 2014

Available Online at: www.ijcam.com

As a consequence, diversity has naturally caught the

attention of software security research community. Forrest et

al. in [18] argue that uniformity represent a potential

weakness because any flaw or vulnerability in an application

is replicated throughout many machines. The security and

the robustness of a system can be enhanced through the

deliberate introduction of diversity. This work outlines how

to introduce diversity using randomized compilation. In

particular, they discuss a specific extension to the GNU

GCC Compiler, which pads each stack frame by a random

amount to defeat stack-based buffer overflow attacks.

Deswarte et al. review in [19] the different levels of diversity

of software and hardware systems and in [20] distinguish

different dimensions and different degree of diversity. Bain

et al. [21] presented a study to understand of diversity on the

survivability of systems to a set of widespread computer

attacks including the Morris worm, Melissa virus,

LoveLetter worm. The authors of [22] report on a

discussion held by a panel of renowned researchers about the

use of diversity as a strategy for computer security and to

identify the main open issues requiring further research. It

emerges from this discussion that there is a lack of

quantitative information on the cost associated with diversity

based solutions and the lack of knowledge about the extent

of protection provided by diversity.

Moreover, diversity has been used in software

architectures targeting the monitoring of system behaviour.

For instance, the HACQIT system [23] uses the status codes

of the server replicas responses to detect failures. Totel et al.

[24] extend this work to do a more detailed comparison of

the replica responses and proposed intrusion detection

algorithm with higher accuracy. These initiatives specifically

target web servers and analyse only server responses.

Consequently, they are not effective against a compromised

replica that responds to client requests consistently. N-

variant systems provide a framework which enables

executing a set of automatically diversified variants using

the same inputs [25]. The framework monitors the behaviour

of the variants in order to detect divergences. The variants

are built so that an anticipated type of exploit can succeed on

only one variant. Therefore, such exploits can be rendered

detectable. The building of variants requires a special

compiler or a binary rewriter. Moreover, this framework

detects only anticipated types of exploits, against which the

replicas are diversified. Multi variant code execution is a

runtime monitoring technique which prevents malicious

code execution [26]. This technique uses diversity to protect

against malicious code injection attack. This is achieved by

running several slightly different variants of the same

program in lockstep. The behaviour of the variants is

compared at some synchronization points, which are in

general system calls. The divergence in the behaviour is

suggestive of anomaly and raises an alarm.

The behavioural distance approach [27, 28] aims at

detecting sophisticated attacks which manage to emulate the

original system behaviour including returning the correct

service response. These attacks are thus able to defeat

traditional anomaly-based IDS. This approach uses a

comparison of the behaviours of two diverse processes

running the same input. It measures the extent to which two

processes behave differently.

CONCLUSION

In this paper I have summarized the different trends in the

development of dependable software architecture along with their

inherent limitations. I have also illustrated the various

modifications to these existing architectures in order to effectively

improve the dependability features of a software system.

REFERENCE

[1] Allen R. and Garlan D., “Formalizing Architectural Connection”,
Proceedings of the Sixteenth International Conference on Software

Engineering, Italy, May 1994.

[2] Astley M. and Agha G., “Modular Construction and Composition of

Distributed Software Architectures”, Proceedings International

Symposium on Software Engineering for Parallel and Distributed
Systems (PDSE '98), 1998.

[3] Brandozzi M. and Perry E.D., “Architectural Prescriptions for
Dependable Systems”, ICSE Workshop on Architecting Dependable

Systems, 2002.

[4] Brandozzi M. and Perry E.D., “Transforming Goal Oriented

Requirement Specifications into Architectural Prescriptions”,
International Workshop on “From Software Requirements to

Architectures (STRAW'01)”, Toronto, Canada, May 2001.

[5] Garlan D., Allen R. and Ockerbloom J., “Architectural Mismatch:

Why Reuse Is So Hard”, IEEE Software 12(6), November 1995.

[6] Garlan D., Monroe R. and Wile D., “Acme: An Architecture

Description Interchange Language”, Proceedings of CASCON’97,

November 1997.

[7] Guerra P., Rubira C. and R. de Lemos, “An idealized fault tolerant

architectural component”, Proceedings of the 24th International
Conference on Software Engineering Workshop on Architecting

Dependable Systems, May 2002.

[8] Guerra P., Rubira C. and Romanovsky R. and R. de Lemos,

“Integrating COTS software components into dependable software

architectures”, Proceedings of the 6th ISORC, IEEE Computer
Society Press, 2003.

[9] Guerra P., Rubira C., Romanovsky R. and R. de Lemos,
“Architecting Dependable Systems”, Lecture Notes in Computer

Science, Springer-Verlag, 2003.

[10] Guerra P., Rubira C. and F. de Lima Filho, “FaTC2: An Object-

Oriented Framework for Developing Fault-Tolerant Component-

Based Systems”, ICSE Workshop on Software Architectures for
Dependable Systems, May 2003.

[11] Lamsweerde A.V., “Goal-Oriented Requirements Analysis with
KAOS”, www-dse.doc.ic.ac.uk/events/policy-99/ pdf/01-

vanLamsweerde.pdf.

International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 2-Issue 9, July 2014

Available Online at: www.ijcam.com

[12] Saridakis T. and Issarny V., “Fault-tolerant software architectures”,

Technical Report 3350, INRIA, February 1999.

[13] Saridakis T. and Issarny V., “Developing Dependable Systems Using

Software Architecture”, Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'99), February 1999

[14] Shaw M. and Garlan D., “Software Architecture: Perspectives on an
Emerging Discipline”, Prentice-Hall, 1996.

[15] Sotirovski D., “Towards Fault-tolerant Software Architectures”,
Proceedings of the Working IEEE/IFIP Conference on Software

Architecture (WICSA'01), August 2001.

[16] Stavridou V. and Riemenschneider R.A., “Provably dependable

software architectures”, Proceedings of the Third ACM SIGPLAN

International Software Architecture Workshop, 1998.

[17] Avizienis, Algirdas, Laprie, Jean-Claude, Randell, Brian, and

Landwehr, Carl E. , “Basic Concepts and Taxonomy of Dependable
and Secure Computing”, IEEE Trans. Dependable Sec. Comput., 1(1),

11–33, 2004.

[18] Forrest, Stephanie, Somayaji, Anil, and Ackley, David H., “Building
Diverse Computer Systems”, In Workshop on Hot Topics in

Operating Systems, pp. 67–72, 1997.

[19] Deswarte, Y., Kanoun, K., and Laprie, J.-C., “Diversity against

accidental and deliberate faults”, In Ammann, P., Barnes, B. H.,

Jajodia, S., , and Sibley, E. H., (Eds.), Computer Security,
Dependability, and Assurance: From Needs to Solutions, p. 171181.

[20] Obelheiro, Rafael R., Bessani, Alysson N., Lung, Lau C., and Correia,
Miguel, “How Practical are Intrusion-Tolerant Distributed Systems?”,

(Technical Report TR0615) Departamento de Informatica Faculdade

de Ciencias da Universidade de Lisboa, 2006.

[21] Bain, Charles, Faatz, Donald B., Fayad, Amgad, and Williams,
Douglas E., “Diversity as a defense strategy in information systems.

Does evidence from previous events support such an approach?”,

IICIS’01, Vol. 211 of IFIP Conference Proceedings, pp. 77–94,
Kluwer, 2001.

[22] Deswarte, Y., Kanoun, K., and Laprie, J.-C., “Diversity against
accidental and deliberate faults”, In Ammann, P., Barnes, B. H.,

Jajodia, S., , and Sibley, E. H., (Eds.), Computer Security,

Dependability, and Assurance: From Needs to Solutions, p. 171181,
Williamsburg, VA, USA: IEEE Computer Press, 1998.

[23] Reynolds, James C., Just, James E., Lawson, Ed, Clough, Larry A.,
Maglich, Ryan, and Levitt, Karl N., “The Design and

Implementation of an Intrusion Tolerant System”, In International

Conference on Dependable Systems and Networks (DSN 2002), pp.
285–292, IEEE Computer Society, 2002.

[24] Totel, Eric, Majorczyk, Fr´ed´eric, and M´e, Ludovic, “COTS
Diversity Based Intrusion Detection and Application to Web Servers”,

In Valdes, Alfonso and Zamboni, Diego, (Eds.), Recent Advances in

Intrusion Detection, 8th International Symposium, RAID’05, Vol.
3858 of Lecture Notes in Computer Science, pp. 43–62, Springer,

2006.

[25] Cox, Benjamin, Evans, David, Filipi, Adrian, Rowanhill, Jonathan,

Hu, Wei, Davidson, Jack, Knight, John, Nguyen-Tuong, Anh, and

Hiser, Jason, “N-variant systems: a secretless framework for security
through diversity”, In USENIX-SS’06: Proceedings of the15th

conference on USENIX Security Symposium, Berkeley, CA, USA:

USENIX Association, 2006.

[26] Weatherwax, Eric, Knight, John, and Nguyen-Tuong, Anh, “A Model

of Secretless Security in N-Variant Systems”, In Workshop on

Compiler and Architectural Techniques for Application Reliability

and Security (CATARS), In the 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Network (DSN2009).

[27] Gao, Debin, Reiter, Michael K., and Song, Dawn Xiaodong,
“Behavioral Distance for Intrusion Detection”, In Valdes, Alfonso

and Zamboni, Diego, (Eds.), Recent Advances in Intrusion Detection,

8th International Symposium, RAID’2005, Vol. 3858 of Lecture
Notes in Computer Science, pp. 63–81, Springer, 2006.

[28] Gao, Debin, Reiter, Michael K., and Song, Dawn Xiaodong,
“Behavioral Distance Measurement Using Hidden Markov Models”,

In Zamboni, Diego and Kr¨ugel, Christopher,(Eds.), Recent

Advances in Intrusion Detection, 9th International Symposium,
RAID’06, Vol. 4219 of Lecture Notes in Computer Science, pp. 19–

40, Springer, 2006.

