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Abstract— This paper compares two different minimum 

spanning tree algorithms, namely Prim’s and Kruskal’s 

algorithm. It introduces the relevant graph theory concepts that 

are needed and the working principles behind the algorithms are 

explained briefly. Next an experiment is conducted in which the 

order of the starting graph is changed and each algorithm’s 

runtime is then measured. As a result it is possible to draw an 

order versus time graph. It becomes apparent that the 

algorithms follow their established time complexities fairly well 

and that out of the two, Prim’s algorithm is the slowest, while 

Kruskal’s  is very fast.  
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I. INTRODUCTION 

Graph theory is an important field of mathematics that has 

been studied carefully ever since its inception, which is 

commonly regarded as the 18th century. It was Euler who 

famously introduced his historical problem of ―Seven Bridges 

of Königsberg‖, in which the goal is to cross every bridge in 

the town only once. In his paper he came to the conclusion 

that no solution exists and this consequently laid the 

foundations to the study of graphs. The subject has spawned 

many other fascinating problems nearly all of which are rather 

concrete in their nature and quite easily comprehensible, but 

the different algorithms for solving them pose an interesting 

field of study offering a source for analysis and research. 

These examples include the travelling salesman, the four 

colours problem and the minimum spanning tree question, 

which will be the topic of research in this paper. The 

algorithms that were made to search for the minimum 

spanning tree were already developed before the introduction 

of computers. In fact the first minimum spanning tree 

algorithm was hypothesised by a Czech mathematician named 

Otakar Boruvka in his paper published in 1926 [1]. His 

purpose was to connect the Moravian electric grid as 

efficiently as possible. Kruskal proved that the shortest 

spanning tree of the graph is unique [2]. Later prim’s has 

interconnected a given set of terminals with a shortest possible 

network of direct links [3]. Today there are a number of these 

algorithms and new ones are being worked on as well in the 

hope of finding more efficient solutions. Graph theory has 

been applied in various areas of studies, such as dealing with 

electronic circuitry, links between entities, such as airline 

paths and also quite importantly in computer science. 

II. DEFINITIONS AND TERMS 

 A graph is defined as a set of points, or more formally called 

vertices, some or all of which are connected with a set of lines, 

or edges. A graph G is denoted as follows: 

G = {V, E} where V is the set of vertices and E is the set of 

edges. Often vertices are also called nodes.  

 

The adjacency matrix is an n × n square matrix, in which 

each element represents a connection between two vertices. If 

no such connection exists the element is left empty. In our 

case, the graph is undirected, which implies that there is a 

connection between from vertex u to v and vice versa. This 

means that the entries aij and aji are equal and so the matrix 

becomes symmetrical. 

 
 A simple graph with its adjacency matrix 

 

 

Spanning tree: A spanning tree of a connected graph is a 

spanning  subgraph of the graph which is a tree. 

For example, figure (b) shows a tree and figure (c) shows a 

spanning tree of the graph in figure (a). 
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Minimal spanning tree: A minimal spanning tree is a 

spanning tree with minimum weight. More specifically we say 

that in a weighted graph G, a spanning tree T is a minimal 

spanning tree if and only if there exists no other spanning tree 

at a distance one from T whose weight is smaller than that of 

T. 

III.  A CLOSER LOOK AT THE ALGORITHMS 

In this section of the essay the algorithms will be explained in 

greater detail and in addition the ways of performing the tasks 

related to graph theory using computer language will be 

addressed. Also the algorithms’ time complexities will be 

presented. 

 

Kruskal’s algorithm 

We adopt the following steps for finding minimum spanning 

tree using Kruskal’s algorithm: 

Step1: List all the edges of graph G in the increasing order of 

weights. 

Step2: Select the smallest edge (having minimum weight) 

from the list and add it to the spanning tree, (which is initially 

empty), if the inclusion of the edge doesn’t make a circuit. If 

the selected edge makes a circuit, then remove it from the list. 

Step3: Repeat steps 1 and 2 until the tree contains v-1 

edges(where v is the number of vertices) or the list is empty. 

Step4: Now if the tree contains less than v-1 edges and the list 

is happened to be empty then no spanning tree is possible, else 

it gives the minimum spanning tree. 

For example: 

 

 
                                   Graph G 
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Minimum Spanning tree of the graph G 
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Prim’s algorithm: 

Kruskal’s algorithm requires sorting of all the edges in order 

of increasing weight. Because of the sorting involved, 

Kruskal’s algorithm is not efficient. Also it requires verifying 

at each step whether a newly selected edge forms a circuit or 

not. To overcome these limitations, Robort Prim has 

proposed this algorithm. 

 

We adopt the following steps for finding minimum spanning 

tree using Kruskal’s algorithm: 

Step1: Represent the given weights of the edges of graph G in 

an  n × n matrix, where n is the number of vertices. 

Step2: Start from vertex v1 and connect it to its nearest 

neighbours (i.e., to the vertex which has the smallest entry in 

row 1 of the matrix), say vk. If more than one smallest entry is 

there, then arbitrarily select one of them. 

Step3: Consider v1 and vk as one subgraph and connect the 

subgraph to its closest neighbours (i.e., to a vertex other than 

v1 and vk) which has the smallest entry in row 1 and k. 

 

For example:  
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Proof of correctness of Kruskal’s and Prim’s algorithm: 

Let G be a connected, weighted graph with n vertices. Let T 

be the spanning tree for G produced by Prim’s algorithm. 

Suppose that the edges of T, in the order in which they were 

selected are t1,t2,……,tn-1. For each i from 1 to n-1, we define 

Ti to be the tree with edges t1,t2,……,ti and T0={ }. Then 

T0⊂T1⊂….⊂Tn-1=T. We now prove, by mathematical 

induction, that each Ti is contained in a minimal spanning tree 

for G. 

Basis Step:  

Clearly P(0): T0={ } is contained in every minimal spanning 

tree for G. 

Induction step 

Let P(k): Tk is contained in a minimal spanning tree T’ for G. 

We use P(k) to show P(k+1): Tk+1 is contained in a minimal 

spanning tree for G. We have  

{t1,t2,……,tk} T’. If tk+1  T’, then Tk+1⊆T’ and we have 

P(k+1) is true. If tk+1  T’, then since T’ is minimal spanning 

tree, T’ {tk+1} must contain a cycle for some edges 

s1,s2,……,sr in T’. Clearly the edges of this cycle cannot all be 

from Tk or Tk+1 would contain this cycle. Let sl be edge with 

smallest index l that is not in Tk. Then sl has one vertex in Tk 

and one not in Tk. This means that when tk+1 was chosen by 

Prim’s(or Kruskal’s) algorithm, sl  was also available. Thus the 

weight of sl is at least as large as that of tk+1.The spanning tree 



 

 International Journal of Computer Architecture and Mobility 

                                (ISSN 2319-9229) Volume 1-Issue 10, August 2013 

 

                                   Available Online at: www.ijcam.com 

(T’-{sl}) {tk+1} contains Tk+1. The weight of this tree is less 

than or equal to the weight of T’, so it is a minimal spanning 

tree for G. Thus, P(k+1) is true. So Tn-1=T is contained in a 

minimal spanning tree and in fact it is a minimal spanning tree. 

 

Time Complexity 

 It has been shown that the time complexity of Kruskal’s 

algorithm is O(E log E) or equivalently O(E log V), where E 

is the number of edges in the graph and V is the number of 

vertices. E is how many times we loop on the edges and this is 

multiplied by log V, which is how long it takes to perform the 

check for cycle task for each edge [6]. The time complexity 

for Prim’s algorithm is O(V2) and O(E + V logV) depending 

on data structure  [7]. 

 

Graphing runtime versus order 

After ensuring that the algorithms do indeed give out the 

correct minimum spanning tree, an experiment was conducted 

to see the connection between the runtime in milliseconds and 

the order of a randomly generated graph. This is essentially 

the time complexity curve. In the experiment a random graph 

with order varying time was created and the minimum 

spanning tree was found by using both the algorithm. The 

number of edges was set to be equal to the order of the graph. 

Some experimentation was conducted beforehand and it 

became clear the number of vertices was more important than 

the number of edges. Doubling the edges increased runtime 

only by a few milliseconds. It is also evident from the time 

complexities that V has a greater effect. For each item, the test 

was run two or three times and the average was taken, 

although the deviations were nominal. As a result the 

following data table was produced: 

  

Order n n=10 n=25 n=50 n=75 n=100 n=125 

Prim's 27 41 150 400 960 1800 

Kruskal's 27 30 32 34 36 40 

 

For a graph with an order of 10 the results were almost 

identical. When the order was increased to 25, slight 

differences became apparent and it appeared that Kruskal’s 

algorithm was the fastest. For an order of 50, Prim’s algorithm 

took more than five times the time than during an order of 10, 

while Kruskal’s had increased by just five milliseconds. The 

next columns proceed in the same fashion and in the final 

graph test of an order of 125 vertices it took Prim’s algorithm 

nearly two seconds to complete, while Kruskal’s algorithm 

completed the same task in just 40 milliseconds. If drawn on a 

graph, with order in the x-axis and also being the independent 

variable and y-axis as the dependant variable time, the plot 

would look as follows: 

 

 
The time complexity of Prim’s algorithm clearly appears 

exponential just as it was given O(V2). In addition Kruskal’s 

algorithms had the same time complexity and the graph 

clearly shows this trend, although Kruskal’s gradient is 

slightly lower. The difference probably lies in the 

implementation. 

 

 

IV. CONCLUSIONS 

 Kruskal's algorithm builds a minimum spanning tree by 

adding one edge at a time. The next line is always the shortest 

(minimum weight) only if it does not create a cycle. Prim’s 

algorithm builds a minimum spanning tree by adding one 

vertex at a time. The next vertex to be added is always the one 

nearest to a vertex already on the graph. Prim’s algorithm is 

the simplest of the two to implement. It also has the least 

number of code lines. While in Kruskal’s algorithm edges are 

added, in Prim’s on the other hand it is the vertices. In this 

algorithm the useful tool is the array which holds the vertices 

that have been added. During every iteration all of the vertices 

that are part of the array are checked and the lightest edge is 

selected and then added to the array. It is quite clear that after 

each round the number of vertices to be checked increases and 

since each vertex has a number of edges, we have a loop 

within a loop. For the last iteration the function must go 

through almost the entire graph. This greatly hinders the 

runtime of the algorithm and it was also visible during 

experimentation.  
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