

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

An Algorithmic Approach to Graph Theory
Neetu Rawat

nrwt12345@gmail.com, Assistant Professor, Chameli Devi Group of Institutions, Indore. India.

Abstract— This paper compares two different minimum

spanning tree algorithms, namely Prim’s and Kruskal’s

algorithm. It introduces the relevant graph theory concepts that

are needed and the working principles behind the algorithms are

explained briefly. Next an experiment is conducted in which the

order of the starting graph is changed and each algorithm’s

runtime is then measured. As a result it is possible to draw an

order versus time graph. It becomes apparent that the

algorithms follow their established time complexities fairly well

and that out of the two, Prim’s algorithm is the slowest, while

Kruskal’s is very fast.

Keywords— Spanning tree, minimum spanning tree, Prims

algorithm, Kruskal algorithm, time complexity.

I. INTRODUCTION

Graph theory is an important field of mathematics that has

been studied carefully ever since its inception, which is

commonly regarded as the 18th century. It was Euler who

famously introduced his historical problem of ―Seven Bridges

of Königsberg‖, in which the goal is to cross every bridge in

the town only once. In his paper he came to the conclusion

that no solution exists and this consequently laid the

foundations to the study of graphs. The subject has spawned

many other fascinating problems nearly all of which are rather

concrete in their nature and quite easily comprehensible, but

the different algorithms for solving them pose an interesting

field of study offering a source for analysis and research.

These examples include the travelling salesman, the four

colours problem and the minimum spanning tree question,

which will be the topic of research in this paper. The

algorithms that were made to search for the minimum

spanning tree were already developed before the introduction

of computers. In fact the first minimum spanning tree

algorithm was hypothesised by a Czech mathematician named

Otakar Boruvka in his paper published in 1926 [1]. His

purpose was to connect the Moravian electric grid as

efficiently as possible. Kruskal proved that the shortest

spanning tree of the graph is unique [2]. Later prim’s has

interconnected a given set of terminals with a shortest possible

network of direct links [3]. Today there are a number of these

algorithms and new ones are being worked on as well in the

hope of finding more efficient solutions. Graph theory has

been applied in various areas of studies, such as dealing with

electronic circuitry, links between entities, such as airline

paths and also quite importantly in computer science.

II. DEFINITIONS AND TERMS

 A graph is defined as a set of points, or more formally called

vertices, some or all of which are connected with a set of lines,

or edges. A graph G is denoted as follows:

G = {V, E} where V is the set of vertices and E is the set of

edges. Often vertices are also called nodes.

The adjacency matrix is an n × n square matrix, in which

each element represents a connection between two vertices. If

no such connection exists the element is left empty. In our

case, the graph is undirected, which implies that there is a

connection between from vertex u to v and vice versa. This

means that the entries aij and aji are equal and so the matrix

becomes symmetrical.

 A simple graph with its adjacency matrix

Spanning tree: A spanning tree of a connected graph is a

spanning subgraph of the graph which is a tree.

For example, figure (b) shows a tree and figure (c) shows a

spanning tree of the graph in figure (a).

mailto:kotwalpushpa@gmail.com

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

Minimal spanning tree: A minimal spanning tree is a

spanning tree with minimum weight. More specifically we say

that in a weighted graph G, a spanning tree T is a minimal

spanning tree if and only if there exists no other spanning tree

at a distance one from T whose weight is smaller than that of

T.

III. A CLOSER LOOK AT THE ALGORITHMS

In this section of the essay the algorithms will be explained in

greater detail and in addition the ways of performing the tasks

related to graph theory using computer language will be

addressed. Also the algorithms’ time complexities will be

presented.

Kruskal’s algorithm

We adopt the following steps for finding minimum spanning

tree using Kruskal’s algorithm:

Step1: List all the edges of graph G in the increasing order of

weights.

Step2: Select the smallest edge (having minimum weight)

from the list and add it to the spanning tree, (which is initially

empty), if the inclusion of the edge doesn’t make a circuit. If

the selected edge makes a circuit, then remove it from the list.

Step3: Repeat steps 1 and 2 until the tree contains v-1

edges(where v is the number of vertices) or the list is empty.

Step4: Now if the tree contains less than v-1 edges and the list

is happened to be empty then no spanning tree is possible, else

it gives the minimum spanning tree.

For example:

 Graph G

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

Minimum Spanning tree of the graph G

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

Prim’s algorithm:

Kruskal’s algorithm requires sorting of all the edges in order

of increasing weight. Because of the sorting involved,

Kruskal’s algorithm is not efficient. Also it requires verifying

at each step whether a newly selected edge forms a circuit or

not. To overcome these limitations, Robort Prim has

proposed this algorithm.

We adopt the following steps for finding minimum spanning

tree using Kruskal’s algorithm:

Step1: Represent the given weights of the edges of graph G in

an n × n matrix, where n is the number of vertices.

Step2: Start from vertex v1 and connect it to its nearest

neighbours (i.e., to the vertex which has the smallest entry in

row 1 of the matrix), say vk. If more than one smallest entry is

there, then arbitrarily select one of them.

Step3: Consider v1 and vk as one subgraph and connect the

subgraph to its closest neighbours (i.e., to a vertex other than

v1 and vk) which has the smallest entry in row 1 and k.

For example:

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

Proof of correctness of Kruskal’s and Prim’s algorithm:

Let G be a connected, weighted graph with n vertices. Let T

be the spanning tree for G produced by Prim’s algorithm.

Suppose that the edges of T, in the order in which they were

selected are t1,t2,……,tn-1. For each i from 1 to n-1, we define

Ti to be the tree with edges t1,t2,……,ti and T0={ }. Then

T0⊂T1⊂….⊂Tn-1=T. We now prove, by mathematical

induction, that each Ti is contained in a minimal spanning tree

for G.

Basis Step:

Clearly P(0): T0={ } is contained in every minimal spanning

tree for G.

Induction step

Let P(k): Tk is contained in a minimal spanning tree T’ for G.

We use P(k) to show P(k+1): Tk+1 is contained in a minimal

spanning tree for G. We have

{t1,t2,……,tk} T’. If tk+1 T’, then Tk+1⊆T’ and we have

P(k+1) is true. If tk+1 T’, then since T’ is minimal spanning

tree, T’ {tk+1} must contain a cycle for some edges

s1,s2,……,sr in T’. Clearly the edges of this cycle cannot all be

from Tk or Tk+1 would contain this cycle. Let sl be edge with

smallest index l that is not in Tk. Then sl has one vertex in Tk

and one not in Tk. This means that when tk+1 was chosen by

Prim’s(or Kruskal’s) algorithm, sl was also available. Thus the

weight of sl is at least as large as that of tk+1.The spanning tree

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

(T’-{sl}) {tk+1} contains Tk+1. The weight of this tree is less

than or equal to the weight of T’, so it is a minimal spanning

tree for G. Thus, P(k+1) is true. So Tn-1=T is contained in a

minimal spanning tree and in fact it is a minimal spanning tree.

Time Complexity

 It has been shown that the time complexity of Kruskal’s

algorithm is O(E log E) or equivalently O(E log V), where E

is the number of edges in the graph and V is the number of

vertices. E is how many times we loop on the edges and this is

multiplied by log V, which is how long it takes to perform the

check for cycle task for each edge [6]. The time complexity

for Prim’s algorithm is O(V2) and O(E + V logV) depending

on data structure [7].

Graphing runtime versus order

After ensuring that the algorithms do indeed give out the

correct minimum spanning tree, an experiment was conducted

to see the connection between the runtime in milliseconds and

the order of a randomly generated graph. This is essentially

the time complexity curve. In the experiment a random graph

with order varying time was created and the minimum

spanning tree was found by using both the algorithm. The

number of edges was set to be equal to the order of the graph.

Some experimentation was conducted beforehand and it

became clear the number of vertices was more important than

the number of edges. Doubling the edges increased runtime

only by a few milliseconds. It is also evident from the time

complexities that V has a greater effect. For each item, the test

was run two or three times and the average was taken,

although the deviations were nominal. As a result the

following data table was produced:

Order n n=10 n=25 n=50 n=75 n=100 n=125

Prim's 27 41 150 400 960 1800

Kruskal's 27 30 32 34 36 40

For a graph with an order of 10 the results were almost

identical. When the order was increased to 25, slight

differences became apparent and it appeared that Kruskal’s

algorithm was the fastest. For an order of 50, Prim’s algorithm

took more than five times the time than during an order of 10,

while Kruskal’s had increased by just five milliseconds. The

next columns proceed in the same fashion and in the final

graph test of an order of 125 vertices it took Prim’s algorithm

nearly two seconds to complete, while Kruskal’s algorithm

completed the same task in just 40 milliseconds. If drawn on a

graph, with order in the x-axis and also being the independent

variable and y-axis as the dependant variable time, the plot

would look as follows:

The time complexity of Prim’s algorithm clearly appears

exponential just as it was given O(V2). In addition Kruskal’s

algorithms had the same time complexity and the graph

clearly shows this trend, although Kruskal’s gradient is

slightly lower. The difference probably lies in the

implementation.

IV. CONCLUSIONS

 Kruskal's algorithm builds a minimum spanning tree by

adding one edge at a time. The next line is always the shortest

(minimum weight) only if it does not create a cycle. Prim’s

algorithm builds a minimum spanning tree by adding one

vertex at a time. The next vertex to be added is always the one

nearest to a vertex already on the graph. Prim’s algorithm is

the simplest of the two to implement. It also has the least

number of code lines. While in Kruskal’s algorithm edges are

added, in Prim’s on the other hand it is the vertices. In this

algorithm the useful tool is the array which holds the vertices

that have been added. During every iteration all of the vertices

that are part of the array are checked and the lightest edge is

selected and then added to the array. It is quite clear that after

each round the number of vertices to be checked increases and

since each vertex has a number of edges, we have a loop

within a loop. For the last iteration the function must go

through almost the entire graph. This greatly hinders the

runtime of the algorithm and it was also visible during

experimentation.

REFERENCES

[1] http://citeseer.ist.psu.edu/old/413530.html.

[2] Kruskal, J. B., Jr., ―On the Shortest Spanning Subtree of

Graph and the Travelling Salesman Problem,‖ Proc. Am.

Math. Soc., Vol. 7, 1956.

[3] Prim, R. C., ―Shortest Connection Networks and some

Generalizations,‖ Bell system Tech. J., Vol. 36, Nov.

1957.

[4] Kolman, Busby, Ross, Rehman, Discrete Mathematical

Structures, Pearson education, 2006.

http://citeseer.ist.psu.edu/old/413530.html

 International Journal of Computer Architecture and Mobility

 (ISSN 2319-9229) Volume 1-Issue 10, August 2013

 Available Online at: www.ijcam.com

[5] C. L. Liu, Elements of Discrete Mathematics, Tata

McGraw Hill, Special Indian Edition 2008.

[6] http://en.wikipedia.org/wiki/Kruskal%27s_algorithm

[7] http://en.wikipedia.org/wiki/Prim%27s_algorithm

[8] www.wikipedia.org – Online encyclopaedia.

http://en.wikipedia.org/wiki/Prim%27s_algorithm

