
International Journal of Computer Architecture and Mobility
 (ISSN 2319-9229) Volume 1-Issue 6, April 2013

Available Online at: www.ijcam.com

Advanced Sheduling Policy and its Performance for the

Embedded Real time System
Mr. P. S. Prasad

1
, Dr. Akhilesh Upadhyay

2
 , Dr. M. Joshi3, Mr. S.Y.Ambatkar4

Assisstant Professor, IT Department, PCE, Nagpur, INDIA
1
. prakashprasad@yahoo.com

Professor, Electronics & Communication Department, SIRT, Bhopal, INDIA
2
. akhileshupadhyay@gmail.com

Professor, Electronics and Communication Department, RMITR, Badnera, Amravati, INDIA
3
.

Associate Professor, Electronics Department, YCCE, Nagpur. INDIA
4
.

Abstract—Real time performance analysis is critical during the

design and integration of embedded software to guarantee that

application time constraints will be met at run time. To select an

appropriate operating system for an embedded system for a

specific application, OS services needs to be analyzed. These OS

services are identified by parameters to form Performance

Metrics. From five performance parameters of real-time operating

system, scheduling latency and interrupt latency are the

fundamental constraints for improving real-time performance of

Linux OS. This paper analyzed the scheduling policyn in order to

select right policy for the specific embedded application and also

suggested the performance for advantage.

Keywords-operating system, real-time system, embedded system,

Linux kernel, scheduling policy.

1. I. INTRODUCTION

Real-time systems are widely used in the construction of

national defense, aerospace, industrial control and many

other fields. As the most critical characters which may

affect the whole system, real-time character is required to

guarantee the performance of these systems. With the

development of computer technology, electronic

information technology, many systems are controlled by

computer system currently. As the majority of general-

purpose computers are using Microsoft's Windows or Linux

which is open-source as operating system, which are not

real- time operating system, so these systems have not

enough real-time characters. At present, the vast majority of

real-time systems are embedded systems while built through

the embedded processors with embedded operating system.

In this paper, “real-time systems” mentioned in the

following text are embedded systems.

Combining both a real-time and a time-sharing subsystem,

hybrid operating systems can provide both predictable real-

time task execution and non real-time services with well

known interfaces and lots of existing applications. In order

ato achieve relatively low development and maintenance

cost the time-sharing subsystem of a hybrid system is based

on commodity operating system such as Linux[1]

ENERGY consumption is an important design concern

for mobile embedded systems that are battery powered and

thermally constrained. Displays have been known as one of

the major power consumers in mobile systems .

Conventional liquid crystal display (LCD) systems provide

very little flexibility for power saving because the LCD

panel consumes almost constant power regardless of the

display content while the external lighting dominates the

system power consumption [2]

Embedded system application is a hot topic in today’s

date & Linux gradually becomes the most important

operating system for embedded applications. Embedded

real-time system must be able to response and deal with

system events within the pre-defined time limitation. In real-

time multi-tasking system, a lot of events and multiple

concurrent tasks are running at the same time. Therefore, to

meet the system response time requirement, we must ensure

that each mission can be achieved within the required time

frame [8].

Real-time systems are specific application systems in

general, because specific characteristics could ensure their

real-time characters on a certain extent. Early real-time

systems have no operating system supported. To implement

multi-task management, engineers must program code for

specific practical application. Therefore, these particular

software developments are less inheritance for code reuse,

maintenance and upgrades which brought a lot of trouble.

The emergence of real-time embedded operating system

provides a powerful tool for real-time systems design and

development because of its real-time kernel, multi-task,

scheduling and fast interrupt response mechanism and so on.

Such real-time characteristics can significantly reduce the

workload of developers, improve development efficiency,

and bring a lot of convenience for the maintenance and

upgrading systems.

However, a system that uses real-time operating is not

necessarily a real-time system. Real-time operating system

is just only provide a basis for the real-time system, and the

most essential elements for a real-time system are to meet

the system requirements of task-critical time, which means

the system must response to events in time and complete

tasks within the limited time[7].

2. II. REAL TIME OPERATING SYSTEM: ITS COMPONENTS

AND CHARACTERISTICS

International Journal of Computer Architecture and Mobility
 (ISSN 2319-9229) Volume 1-Issue 6, April 2013

Available Online at: www.ijcam.com

Real-time operating system is a subtype of operating
system. It has a lot of characteristics which are similar to
common operating system in many respects. It is mainly
responsible for the control and management of variety of
hardware resources to enable the hardware system to
become available, and provides upper level applications
with rich system calls. It schedules execution in a timely
manner, manages system resources and provides a
consistent foundation for developing application code [5].

A. Components of RTOS

Most of the RTOS kernels consist of following

components:

 Scheduler - The scheduler is at the heart of every

kernel. A scheduler provides the algorithms needed

to determine which task executes when.

 Objects- The most common RTOS kernel objects

are tasks, semaphores and message queues.

 Services- Most kernels provide services that help

developers create applications for real time

embedded systems. These services comprise sets of

API calls that can be used to perform operations on

kernel objects or can be used in general to facilitate

following services:

o Timer Management

o Interrupt Handling

o Device I/O

o Memory Management

Embedded systems are used for various applications.

These applications can be proactive or reactive dependent

on the requirements like interface, scalability, connectivity

etc. Choosing the OS for an embedded system is based on

the analysis of OS itself and the requirements of application.

B. Characteristics

1. Its real time characteristic-Response to events in

time and complete tasks within the limited time

1. The scheduling objective is letting high priority

task go first

2. The tasks running on real-time operating system

should be certain

3. Some data are highly sharing in real-time operating

system

II. FACTORS AFFECTING REAL-TIME CHARACTERISTICS

OF OPERATING SYSTEM

There are varieties of factors impacting a system’s real-

time. Among these factors, operating system and its own

factors play crucial roles, including process management,

task scheduling, context switching time, memory

management mechanism, the time of interrupt handle, and

so on.

A. Scheduling of tasks

It is crucial for the real-time operating system to adapt

preemptive scheduling kernel, which is based on task

priority. The µC/OS-II operating system uses this method to

implement its scheduling. In an operating system with

nonpreemptive scheduling mechanism, must have no strict

real-time characteristic.

Preemptive scheduling provides a good foundation for

real-time system. In order to maximize the efficiency of

scheduling systems, the operating system should run with

certain real-time scheduling algorithm.

There are some common real-time scheduling

algorithms, such as the Liu and Layland Rate-Monotonic

(RM) scheduling algorithm and the earliest deadline priority

(EDF) algorithm. The RM scheduling algorithm is a type of

static scheduling algorithm, in which the priority of tasks

are determined by the length of the cycle of task, and the

shorter cycle of task has a higher priority. The EDF

algorithm is one of the most popular dynamic priority

scheduling algorithms that define priority of tasks according

to their deadlines. Clearly, an excellent task scheduling

algorithm can improve the operating system’s real-time

characteristics. However, it also consumes a certain degree

of system resources. Thus, time complexity of scheduling

algorithm, in turn, has an impact on the real-time

characteristic.

B. The context switching time

In a multi-tasking system, context switch refers to a

series operation that the right of using CPU transferring

from one task which is running to another ready for running

one [6]. In preemptive scheduling systems, there are a lot of

events that can cause context switches, such as external

interrupt, or releasing of resource which high priority tasks

wait for. The linkages of tasks in an operating system are

achieved by the process control block (PCB) data structure.

When context switches occurred, the former tasks

information was saved to the corresponding PCB or stack

PCB specified. The new task fetches original information

from corresponding PCB. The time switching consumed

depends on the processor architecture, because different

processors need to preserve and restore different number of

registers; some processors have a single special instruction

which is able to achieve all the register’s preserve and

restore job; some processors provide a number of registers

group, the context switching required only need to change

the register group pointer [9]. Operating system data

structures will also affect the efficiency of context switch.

C. The time of kernel prohibiting interrupt

To ensure the atomic of operating to some critical

resource, the operating system kernel has to prohibit all of

interrupt sometimes. Interrupt will break the sequence of

instructions, and may cause damage of data. Prohibiting

interrupt always delay the response of request and context

switching. In order to improve real-time performance of

operating system, noncritical operations can be inserted

between the critical areas. Setting reasonable preemptive

points in critical areas can reduce the prohibition time of

interrupt.

International Journal of Computer Architecture and Mobility
 (ISSN 2319-9229) Volume 1-Issue 6, April 2013

Available Online at: www.ijcam.com

D. Efficiency and treatment methods of interrupt

As the driving force for operating system scheduling,

interrupt provides approaches of interaction between

external events and operating system. The interrupt response

speed is one of the most important ingredients which impact

the real-time performance of system. At the end of each

instruction execution, CPU will detect the status of

interrupt. If there is an interrupt request and the interrupt is

not prohibited, the system will execute a series of interrupt

treatments: pushing values of CPU registers to stacks,

obtaining the interrupt vector and getting the procedures

counter register value, then jumping to the entrance of ISR

and beginning to run, etc. [3]. What have mentioned above

requires some system consumption. For a specific system,

the consumption is identifiable, that is to say: it is possible

to calculate the time delay of interrupt treatment caused by

this part of work.

As interrupt management strategy, allowing interrupt

nesting can further improve the response of high-priority

incident’s real-time, but relatively low-priority interrupt

handling will be suffer negative impact. It should be

considered under certain situation.

Non-emergency interruption may cause delay to

important and urgent tasks, because interrupt handling is

executed before task and thread. In order to reduce the

delay, the handle process should be divided into two parts,

just like Linux divided it into the top half and bottom half.

Also Windows CE’s interrupt handling is divided into two

parts: ISR and IST. They tried to keep ISR as a short

program, while allowing tasks do more work, and make full

use of the task scheduling mechanism.

E. Memory management mechanism

Generally, a real-time operating system uses the most

efficient unified physical address space. Every task runs in

the same address space. This management method can avoid

the address space switching caused by the process

scheduling that will occupy a lot of system resources.

Because converting virtual address to physical address will

lower the system performance, real-time operating systems

use physical address directly, although it may bring security

and stability problems. One of the most popular embedded

operating systems-Vxworks uses the mechanism.

Real-time operating systems never use virtual memory,

because it is hard to estimate the time of fetching data from

external storage medium. When a page miss occurs,

memory management should swap pages between internal

memory and external memory. This process will suspend

current running task. So the execution of real-time task

cannot be assured.

F. The race condition among tasks

The tasks of the system may compete for sharing
resources. It will definitely cause some tasks to suspend and
wait for the sharing resource. In preemptive scheduling
kernel, priority inversion is a serious problem caused by race

condition. A low-priority task which occupies critical
resources has no right to implement, while a high-priority
task has to wait a middle-priority task to release CPU to low-
priority task. So the high-priority task is affected seriously
and the task scheduling will become unstable and
unpredictable. The real-time performance of system
deteriorates rapidly. After all, the high-priority task can only
seize the CPU from the low-priority task. It can’t seize the
resources. At this condition, it is necessary to use priority
inheritance and priority ceiling to resolve the problem.

III. ANALYSIS OF LINUX KERNEL’S REAL TIME

PERFORMANCE AND HOW IT IS RESTRICTED

It’s well known that an operating system’s real-time

performance is evaluated by the following five technologic

parameters: Deterministic, Preemptive, Context Switching,

Interrupt Latency and Scheduling Latency [1, 2]. Context

Switching is relative with specific CPU and Deterministic is

determined by the remaining three aspects. So in this paper

Linux kernel’s real-time performance is discussed from

Preemptive, Interrupt Latency and Scheduling Latency.

A. Preemptive

In general there are two modes in Linux kernel which

are user state and core state. When a process operates at user

state, preemptive scheduling is possible to happen if there is

no shared data. But at core state the kernel is non-

preemptive [4] and the tasks ready to run must be done in

sequence. When a critical section of code is executed or

Preempt disable command is used, the task cannot be

preempted. In other words Linux kernel’s preemptive

performance still doesn’t meet the need of hard real-time

performance.

B. Scheduling Policy

Scheduling latency is the time that it takes for a high

priority task ready to run caused by an event to wait to be

done and is determined by interrupt latency, non-preemptive

time and scheduling algorithm. In general Linux kernel

scheduling algorithm is an O(n) algorithm indicating

scheduling time is relative with the task scale, which is

caused by concentrated computing time slices. Scheduling

time is certain independent of task scale because Active

queue and Expired queue are set so that it is unnecessary to

compute time slices concentrated and scan the whole queue

before scheduling switch. Thus easily resulting in that non-

real-time task blocks real-time one by disabling interrupt.

C. Interrupt Latency

An interrupt has the highest priority and can preempt

any task. It is common to disable interrupt for safety in

Linux kernel process. If lower priority tasks disable

interrupt there will be uncertain latency time for real-time

task’s response, which is not allowed for real-time system.

International Journal of Computer Architecture and Mobility
 (ISSN 2319-9229) Volume 1-Issue 6, April 2013

Available Online at: www.ijcam.com

D. Improvement on Linux Kernel Real-Time performance

It takes long time for Linux kernel to develop and its
performance to increase. However for the standard Linux
kernel its real-time performance is always a problem unable
to be solved completely. It is not because the designers are
not excellent for many top programmers and engineers in the
world take part in developing Linux kernel, but the standard
Linux kernel needs to take into account fairness, balance and
scale compatibility, and many other factors so that real-time
performance has to give in. The real-time performance of
Linux kernel is improved by improving both scheduling
strategy and interrupt latency which block real-time task.

IV. SCHEDULING POLICY AND THEIR PERFORMANCE

Comparision of Scheduling policies for embedded system

which is to be executing the real time system. We have

executed two policies like shorter service time first and

longer service time first. These policies are then compared

with the First In First Out policy which is very common.

The camparision also gives us better understanding of how a

scheduling policy can influence the execution of Real time

systems performance.

Following table1 shows the details for FIFO.

Time 10 20 30 40

Average wait time 0.7631 2.764 3.973 3.518

Average Queue Length 0.9224 3.467 4.041 3.537

 Following table2 shows the details for Shorter Service

Time First.

Time 10 20 30 40

Average wait time 0.6093 1.395 2.152 2.016

Average Queue Length 0.9768 2.306 2.299 2.027

Following table3 shows the details for Longer Service Time

First.

Time 10 20 30 40

Average wait time 1.073 2.174 4.715 4.761

Average Queue Length 1.192 4.44 5.912 6.408

From the above observations it is very clear that the Shorter

seek time first policy yields the better results.

V. CONCUSION

The selection of right operating system for a specific

application has a great impact on performance of real- time

system. In the embedded application the improvement of

real-time performance of Linux kernel has far-reaching

significance. The complex relationship between the tasks

may cause heavy system consumption on internal

communication between tasks. The Scheduling and

separating the tasks in the beginning will also give us

flexibility to apply different algorithms for different task

queues. Synchronization mechanism between tasks will

decline the real-time performance of system. At last, which

scheduling algorithm to use a real-time operating system to

implement an actual application system is the key for all

embedded system developer.

REFERENCES

[1] Miao Liu et.all, “On Improving Real Time Interrupt Latencies of
Hybrid Operating Systems with Two-Level Hardware
Interrupts”,IEEE Transactions On Computers, Vol. 60, No 7, July
2011, pp. 978-991.

[2] Mian Dong and Lin Zhong, “Power Modeling and Optimisation for
OLED Displays”, IEEE Transactions on Computers,Vol. 11, No 9,
September 2012, pp. 1587-1599.

[3] L.I. Bing and L.I. Zhong-wen, “Analysis of Linux Real-time
Mechanism”, Computer Technology and Development, vol. 17(09),
Sep. 2007, pp. 41-44.

[4] B. J. Wang, M. S. Li and Z. G. Wang , “Uniprocessor static priority
scheduling with limited priority levels”, Journal of Software, vol.
17(03), March 2006, pp. 602-610.

[5] S. Andrew, Tanenbaum, S. Albert and Woodhull, “Operating
Systems Design and Implementation”（Third Edition） , Prentice
Hall, January 04,2006.

[6] J. S. Xing, J. X. Liu, and Y. J. Wang, “Schedule ability test
performance analysis of rate monotonic algorithm and its extended
ones”, Journal of Computer Research and Development, vol. 42(11),
Nov. 2005, pp. 2025-2032.

[7] Q. Li and C. Yao, “Real-Time Concepts for Embedded Systems”.
CMP Books, 2003.

[8] Tangyin, “Real-Time Operating System Application development
Guide”，China Electric Power Press, July 2002.

[9] Chen Han Fei, “Research of Key Problem about Real-Time Operating
System”, Doctor’s Dissertation of Zhejiang University,2009.

[10] YuZhaoAn, “Research of Real-Time Performance and Software
Reliability based on Embedded Industrial Control System with
Windows CE”, Master’s dissertation of Northwest University,2009.

[11] S. Andrew, Tanenbaum, S. Albert and Woodhull, “Operating
Systems Design and Implementation” （Third Edition） , Prentice
Hall, January 04, 2006.

Author’s Biography

Prakash S. Prasad has published more
than 10 papers in National and

International Conferences. He is

Member Of IEEE, ISTE and IACSIT.
He has completed his bachelors degree

in 1997, and Masters Degree in 2007

He is currently working as assistant
professor at Priyadarshini college of

Engineering and Head of The

Department of Information
Technology. He is having 14 Years of

Teaching experience and his interests

include network security, Operating

System and System Software .
Prof. (Dr.) Akhilesh R. Upadhyay obtained
Ph.D. degree in Electronic Engineering from

the Swami Ramanand Teerth Marathwada

University, Nanded in 2009, M.E. (Hons.)
and B.E. (Hons.) in Electronics Engineering

from S.G.G.S. Institute of Engineering &

Technology, Nanded [M.S.] in year 2004
and 1996 respectively. He is currently

working as Professor EC Dept. and Vice

Principal at Sagar Institute of Research and Technology, Bhopal, India
since October 2009. He has more than 13 years teaching and 3 years of

industry experience. He is Associate Editor of Journal of Engineering,

Management & Pharmaceutical Sciences, Ex-Editor of International
Journal of Computing Science and Communication Technologies and

International Journal of Computer Architecture and Mobility
 (ISSN 2319-9229) Volume 1-Issue 6, April 2013

Available Online at: www.ijcam.com

member of Editorial Boards/Review Committee of various reputed

Journals and International Conferences of various Countries. He has
more than 54 research publications in reputed International/National

Journals and Conferences (e,g, IEEE, ACM, Springer, IJCTEE, JICT).

He also authored more than 16 text/reference books on electronics
devices, instrumentation and power electronics for various Universities.

He is recognized Ph.D. Supervisor for various Universities in India and

presently guiding 10 Ph.D. scholars. He visited Malaysia in July 2007 as
overseas representative of APIIT and San Francisco California, U.S.A.

in January 2012 for attending International Conference “Electronic

Imaging 2012” to present his latest research work.

