
International Journal of Computer Architecture and Mobility (ISSN 2319-9229)

Volume 7 -Issue 10, October 2019

Available Online at: www.ijcam.com

 A Review and a Comparative Study of Object Detection Algorithms

Sudhanshu Jaisani , Vrinda Diwan , Parth Katare

sudhanshujaisani38@gmail.com, diwanvrinda@gmail.com, p.katare98@gmail.com

Shri Vaishnav Vidyapeeth Vishwavidyalaya Indore-Ujjain Road, Indore – 453111, India

Indore,India

Abstract—This paper aims to find the best possible

combination of speed and accuracy while comparing

different object detection algorithms that use

convolutional neural networks to perform object

detection. Models which are usually computationally

expensive, achieve the best accuracy, but cannot be

deployed in a simple setting with limited resources,

whereas, faster models fail to achieve similar results

compared to their bigger and more memory intensive

counterparts. We discuss two ends of the spectrum here

comparing three different models ,i.e Single Shot

Detector (SSD), Faster R-CNN (Region - based

Convolutional Neural Networks), R-FCN(Region

based- Fully Convolutional Networks), where on one

end we get a model which can be deployed on a mobile

device because of its speed and another model which is

at the cutting edge of performance when it comes to

accuracy. These models are trained and their

performance metrics tested on the COCO (common

objects in context) dataset.

INTRODUCTION

State of the art computer vision systems have involved a

range of object detection models that use convolutional

neural networks in their working. The deployment of these

models like YOLO, SSD, R-FCN, R-CNN, etc depends on

the kind of usage we want. Google photos has deployed

models like SSD MobileNet which is known for its speed

and isn’t memory intensive, performance isn’t the most

important factor, but memory efficiency is. In case of self

driving cars though, the requirement for an extremely

accurate model is a priority, as these real time systems are

performing tasks which can lead to a life and death situation

in their surroundings. We need to evaluate these models

using several evaluation metrics like mAP, memory

requirement, testing time. We have only considered models

which are quite similar in their architecture on a high level

overview. The models that are considered are Faster R-

CNN, R-FCN, SSD, these models have used sliding window

style predictions and have only used a single CNN network.

These models are responsible for the object detection part,

whereas the feature extraction part is carried out by the

different image classification models , the state of the art

ones which have participated in the imagenet competitions.

We refer to the object detection models as meta

architectures and they are coupled with different feature

extractors for eg(VGG, Resnet, MobileNet), to evaluate the

various combinations we get through them. We would first

describe the different meta architectures and then the

different feature extractors, and then compare their

combinations by testing them on the objects present in the

COCO dataset. In this paper we have tried to perform this

experiment in controlled conditions with same hardware

conditions for comparison and run these tests multiple times

so that they prove to be statistically consistent. We have

used the deep learning library Tensorflow for our

implementation. Previous experiments by others have been

performed on caffe, and tried on other standard datasets like

PASCAL VOC (Visual Object Classes). A few have fine

tuned the detectors for their specific objects and noted the

test times for different models. The main reason for using

tensorflow was its portability and ease of use.

2. META ARCHITECTURE

Modern meta architectures all use CNN for object

detection , let us have a look at the history of a few meta

architectures that we are discussing, and have an in depth

look at their inner workings

2.1 R-CNN

 The R-CNN model was one of the first models to use

convolutional neural networks for object detection. The goal

of R-CNN is to take in an image, and correctly identify

where the main objects (via a bounding box) in the image.

But how do we find out where these bounding boxes are? R-

CNN does what we might intuitively do as well -propose a

bunch of boxes in the image and see if any of them actually

correspond to an object. R-CNN creates these bounding

boxes, or region proposals using a process called Selective

Search. Selective search, looks at the image through

windows of different sizes, and for each size tries to group

together adjacent pixels by texture, color, or intensity to

identify objects. Once the proposals are created, R-CNN

warps the region to a standard square size and passes it

through to a feature extractor or image classifier , which is a

CNN. On the final layer of the CNN, R-CNN adds a

Support Vector Machine (SVM) that simply classifies

whether this is an object, and if yes, which object is it.

Limitations of R-CNN:

1.It still takes a huge amount of time to train the network as

you would have to classify 2000 region proposals per

image.

2.It cannot be implemented in real time as it takes around 47

seconds for each test image.

3.The selective search algorithm is a fixed algorithm.

Therefore, no learning is happening at that stage. This could

lead to the generation of bad candidate region proposals.

2.2 Fast R-CNN

International Journal of Computer Architecture and Mobility (ISSN 2319-9229)

Volume 7 -Issue 10, October 2019

Available Online at: www.ijcam.com

R-CNN works really well, but is really quite slow for a few

simple reasons It requires a forward pass of the CNN for

every single region proposal for every single image. It has to

train three different models separately -the CNN to generate

image features, the classifier that predicts the class, and the

regression model to tighten the bounding boxes. This makes

the pipeline extremely hard to train. Both these problems

were solved in Fast R-CNN by the creator of R-CNN

himself. For the forward pass of the CNN, Girshick realized

that for each image, a lot of proposed regions for the image

invariably overlapped causing us to run the same CNN

computation again and again . His insight was simple —

Why not run the CNN just once per image and then find a

way to share that computation across the proposals? .This is

exactly what Fast R-CNN does using a technique known as

RoIPool (Region of Interest Pooling). At its core, RoI Pool

shares the forward pass of a CNN for an image across its

subregions. In the image above, notice how the CNN

features for each region are obtained by selecting a

corresponding region from the CNN’s feature map. Then,

the features in each region are pooled (usually using max

pooling). So all it takes us is one pass of the original image.

The second insight of Fast R-CNN is to jointly train the

CNN, classifier, and bounding box regressor in a single

model. Where earlier we had different models to extract

image features (CNN), classify (SVM), and tighten

bounding boxes (regressor),Fast R-CNN[4] instead used a

single network to compute all three. Fast R-CNN replaced

the SVM classifier with a softmax layer on top of the CNN

to output a classification. It also added a linear regression

layer parallel to the softmax layer to output bounding box

coordinates. In this way, all the outputs needed came from

one single network.

Advantage of Fast R-CNN over R-CNN:

It is faster than R-CNN because we don’t have to feed 2000

region proposals to the convolutional neural network every

time. Instead, the convolution operation is done only once

per image and a feature map is generated from it.

Drawback of Fast R-CNN:

The region proposals are still generated by selective search

(SS)(as in the case of R-CNN) rather than using

convolutional neural network (as in the case of Faster R-

CNN). Due to this fact Fast R-CNN is slow in object

detection as compared to Faster R-CNN.

2.3 Faster R-CNN

There was still one bottleneck with Fast R-CNN which had

to be sorted, that was the region proposer. The very first step

to detecting the locations of objects is generating a bunch of

potential bounding boxes or regions of interest to test. In

Fast R-CNN, these proposals were created using Selective

Search, a fairly slow process that was found to be the

bottleneck of the overall process. Faster R-CNN found a

way to make the step of region proposal almost cost free.

The insight of Faster R-CNN was that region proposals

depended on features of the image that were already

calculated with the forward pass of the CNN (first step of

classification). So why not reuse those same CNN results

for region proposals instead of running a separate selective

search algorithm? Indeed, this is just what the Faster R-

CNN team achieved. In this model, a single CNN is used to

both carry out region proposals and classification. This

way,only one CNN needs to be trained and we get region

proposals almost for free. How the Regions are Generated?

Let’s take a moment to see how Faster R-CNN generates

these region proposals from CNN features. Faster R-CNN

adds a Fully Convolutional Network on top of the features

of the CNN creating what’s known as the Region Proposal

Network.

Advantage of Faster R-CNN:

Since Faster CNN uses the same Convolutional Neural

Network for generating regional proposals and object

detection as well, It is much faster in object detection as

compared to the previous two algorithms; Namely:R-CNN

and Fast R-CNN.

2.4 R-FCN

With the increase in performance, Faster R-CNN was an

order of magnitude swifter than its earlier counterpart fast

R-CNN .But there was an issue of applying the region-

specific component had to be applied several times in an

image, this issue was resolved in R-FCN (Region based

Fully Convolutional networks) where the computation

required per image was reduced drastically, where instead of

cropping features from the same layer where the crops are

predicted, the crops are taken from last layer of features

prior to predictions. The algorithm works faster than Faster

R-CNN while achieving comparable accuracy

2.5 SSD(Single Shot Detector)

SSD works by converting discrete output spaces for

bounding boxes into sets of default boxes for different

aspect ratios and for every feature map location. During

predictions, the model generates the scores in each default

box for every object detected and scales the default box to

fit the object shape. SSD is simpler than other networks as it

performs all computations in a single network. SSD

combines the predictions from numerous feature maps

having different resolutions to handle objects of various

sizes. It doesn’t involve regional proposal generating or

feature resampling like previous networks did, which makes

it easy to train and integrate into systems where detection is

required.

International Journal of Computer Architecture and Mobility (ISSN 2319-9229)

Volume 7 -Issue 10, October 2019

Available Online at: www.ijcam.com

COMPARATIVE STUDY

 CONCLUSION

We have put forward a comparative study of state of the art

object detectors which use convolutional neural networks.

We have addressed their issues and performance on a

common hardware.We discovered that SSD performs much

better with light weight feature extractors on bigger images,

competing with the most accurate of models. We also found

that fewer proposals increase speed without compromising

much on the mAP scores.We wish to try different

combinations and find better results and sweet spots which

can be applied to specific use cases.

REFERENCES

[1] Antonio T, Contextual Priming for Object Detection,

2003. International Journal of Computer Vision, Volume 53,

Number 2, 169-191.

[2] Paul V and Michael J, Robust Real-time Object

Detection, 2001. Second International Workshop On

Statistical And Computational Theories Of Vision –

Modeling, Learning, Computing, And Sampling,

Vancouver, Canada, July 13, 2001.

