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Abstract—This paper aims to find the best possible 

combination of speed and accuracy while comparing 

different object detection algorithms that use 

convolutional neural networks to perform object 

detection. Models which are usually computationally 

expensive, achieve the best accuracy, but cannot be 

deployed in a simple setting with limited resources, 

whereas, faster models fail to achieve similar results 

compared to their bigger and more memory intensive 

counterparts. We discuss two ends of the spectrum here 

comparing three different models ,i.e Single Shot 

Detector (SSD), Faster R-CNN ( Region - based 

Convolutional Neural Networks ), R-FCN( Region 

based- Fully Convolutional Networks ), where on one 

end we get a model which can be deployed on a mobile 

device because of its speed and another model which is 

at the cutting edge of performance when it comes to 

accuracy. These models are trained and their 

performance metrics tested on the COCO ( common 

objects in context) dataset. 

INTRODUCTION  

State of the art computer vision systems have involved a 

range of object detection models that use convolutional 

neural networks in their working. The deployment of these 

models like YOLO, SSD, R-FCN, R-CNN, etc depends on 

the kind of usage we want. Google photos has deployed 

models like SSD MobileNet which is known for its speed 

and isn’t memory intensive, performance isn’t the most 

important factor, but memory efficiency is. In case of self 

driving cars though, the requirement for an extremely 

accurate model is a priority, as these real time systems are 

performing tasks which can lead to a life and death situation 

in their surroundings. We need to evaluate these models 

using several evaluation metrics like mAP, memory 

requirement, testing time. We have only considered models 

which are quite similar in their architecture on a high level 

overview. The models that are considered are Faster R-

CNN, R-FCN, SSD, these models have used sliding window 

style predictions and have only used a single CNN network. 

These models are responsible for the object detection part, 

whereas the feature extraction part is carried out by the 

different image classification models , the state of the art 

ones which have participated in the imagenet competitions. 

We refer to the object detection models as meta 

architectures and they are coupled with different feature 

extractors for eg( VGG, Resnet, MobileNet), to evaluate the 

various combinations we get through them. We would first 

describe the different meta architectures and then the 

different feature extractors, and then compare their 

combinations by testing them on the objects present in the 

COCO dataset. In this paper we have tried to perform this 

experiment in controlled conditions with same hardware 

conditions for comparison and run these tests multiple times 

so that they prove to be statistically consistent. We have 

used the deep learning library Tensorflow for our 

implementation. Previous experiments by others have been 

performed on caffe, and tried on other standard datasets like 

PASCAL VOC (Visual Object Classes). A few have fine 

tuned the detectors for their specific objects and noted the 

test times for different models. The main reason for using 

tensorflow was its portability and ease of use. 

 

2. META ARCHITECTURE 

Modern meta architectures all use CNN for object 

detection , let us have a look at the history of a few meta 

architectures that we are discussing, and have an in depth 

look at their inner workings 

2.1 R-CNN 

 The R-CNN model was one of the first models to use 

convolutional neural networks for object detection. The goal 

of R-CNN is to take in an image, and correctly identify 

where the main objects (via a bounding box) in the image. 

But how do we find out where these bounding boxes are? R-

CNN does what we might intuitively do as well -propose a 

bunch of boxes in the image and see if any of them actually 

correspond to an object. R-CNN creates these bounding 

boxes, or region proposals using a process called Selective 

Search. Selective search, looks at the image through 

windows of different sizes, and for each size tries to group 

together adjacent pixels by texture, color, or intensity to 

identify objects. Once the proposals are created, R-CNN 

warps the region to a standard square size and passes it 

through to a feature extractor or image classifier , which is a 

CNN. On the final layer of the CNN, R-CNN adds a 

Support Vector Machine (SVM) that simply classifies 

whether this is an object, and if yes, which object is it. 

Limitations of  R-CNN: 

1.It still takes a huge amount of time to train the network as 

you would have to classify 2000 region proposals per 

image. 

2.It cannot be implemented in real time as it takes around 47 

seconds for each test image. 

3.The selective search algorithm is a fixed algorithm. 

Therefore, no learning is happening at that stage. This could 

lead to the generation of bad candidate region proposals. 

 

2.2 Fast R-CNN 
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R-CNN works really well, but is really quite slow for a few 

simple reasons It requires a forward pass of the CNN for 

every single region proposal for every single image. It has to 

train three different models separately -the CNN to generate 

image features, the classifier that predicts the class, and the 

regression model to tighten the bounding boxes. This makes 

the pipeline extremely hard to train. Both these problems 

were solved in Fast R-CNN by the creator of R-CNN 

himself. For the forward pass of the CNN, Girshick realized 

that for each image, a lot of proposed regions for the image 

invariably overlapped causing us to run the same CNN 

computation again and again . His insight was simple —

Why not run the CNN just once per image and then find a 

way to share that computation across the proposals? .This is 

exactly what Fast R-CNN does using a technique known as 

RoIPool (Region of Interest Pooling). At its core, RoI Pool 

shares the forward pass of a CNN for an image across its 

subregions. In the image above, notice how the CNN 

features for each region are obtained by selecting a 

corresponding region from the CNN’s feature map. Then, 

the features in each region are pooled (usually using max 

pooling). So all it takes us is one pass of the original image. 

The second insight of Fast R-CNN is to jointly train the 

CNN, classifier, and bounding box regressor in a single 

model. Where earlier we had different models to extract 

image features (CNN), classify (SVM), and tighten 

bounding boxes (regressor),Fast R-CNN[4] instead used a 

single network to compute all three. Fast R-CNN replaced 

the SVM classifier with a softmax layer on top of the CNN 

to output a classification. It also added a linear regression 

layer parallel to the softmax layer to output bounding box 

coordinates. In this way, all the outputs needed came from 

one single network. 

 

Advantage of Fast R-CNN over R-CNN: 

It is faster than R-CNN because we don’t have to feed 2000 

region proposals to the convolutional neural network every 

time. Instead, the convolution operation is done only once 

per image and a feature map is generated from it. 

 

Drawback of Fast R-CNN: 

The region proposals are still generated by selective search 

(SS)(as in the case of R-CNN) rather than using 

convolutional neural network (as in the case of Faster R-

CNN). Due to this fact Fast R-CNN is  slow in  object 

detection as compared to Faster R-CNN. 

 

2.3 Faster R-CNN 

There was still one bottleneck with Fast R-CNN which had 

to be sorted, that was the region proposer. The very first step 

to detecting the locations of objects is generating a bunch of 

potential bounding boxes or regions of interest to test. In 

Fast R-CNN, these proposals were created using Selective 

Search, a fairly slow process that was found to be the 

bottleneck of the overall process. Faster R-CNN found a 

way to make the step of region proposal almost cost free. 

The insight of Faster R-CNN was that region proposals 

depended on features of the image that were already 

calculated with the forward pass of the CNN (first step of 

classification). So why not reuse those same CNN results 

for region proposals instead of running a separate selective 

search algorithm? Indeed, this is just what the Faster R-

CNN team achieved. In this model, a single CNN is used to 

both carry out region proposals and classification. This 

way,only one CNN needs to be trained and we get region 

proposals almost for free. How the Regions are Generated? 

Let’s take a moment to see how Faster R-CNN generates 

these region proposals from CNN features. Faster R-CNN 

adds a Fully Convolutional Network on top of the features 

of the CNN creating what’s known as the Region Proposal 

Network. 

 

Advantage of Faster R-CNN: 

Since Faster CNN uses the same Convolutional Neural 

Network for generating regional proposals and object 

detection as well, It is much faster in object detection as 

compared to the previous two algorithms; Namely:R-CNN 

and Fast R-CNN. 

 

2.4 R-FCN 

With the increase in performance, Faster R-CNN was an 

order of magnitude swifter than its earlier counterpart fast 

R-CNN .But there was an issue of applying the region-

specific component had to be applied several times in an 

image, this issue was resolved in R-FCN (Region based 

Fully Convolutional networks) where the computation 

required per image was reduced drastically, where instead of 

cropping features from the same layer where the crops are 

predicted, the crops are taken from last layer of features 

prior to predictions. The algorithm works faster than Faster 

R-CNN while achieving comparable accuracy  

 

2.5 SSD(Single Shot Detector) 

SSD works by converting discrete output spaces for 

bounding boxes into sets of default boxes for different 

aspect ratios and for every feature map location. During 

predictions, the model generates the scores in each default 

box for every object detected and scales the default box to 

fit the object shape. SSD is simpler than other networks as it 

performs all computations in a single network. SSD 

combines the predictions from numerous feature maps 

having different resolutions to handle objects of various 

sizes. It doesn’t involve regional proposal generating or 

feature resampling like previous networks did, which makes 

it easy to train and integrate into systems where detection is 

required. 
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COMPARATIVE STUDY 

 

 

 CONCLUSION 

We have put forward a comparative study of state of the art 

object detectors which use convolutional neural networks. 

We have addressed their issues and performance on a 

common hardware.We discovered that SSD performs much 

better with light weight feature extractors on bigger images, 

competing with the most accurate of models. We also found 

that fewer proposals increase speed without compromising 

much on the mAP scores.We wish to try different 

combinations and find better results and sweet spots which 

can be applied to specific use cases. 
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